Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The immune system is a potent inhibitor of tumor growth with curative potential, constituting in many eyes the future of antineoplastic therapy. Adoptive cell therapy (ACT) is a form of immunotherapy in which autologous cancer-cognate lymphocytes are expanded and modified ex vivo and re-infused to combat the tumor. This review follows the evolvement of ACT and treatment protocols, focusing on unresolved dilemmas regarding this treatment while providing evidence for its effectiveness in refractory patients. Future directions of ACT are discussed, in particular with regard to genetic engineering of autologous cells, and the role of ACT in the era of checkpoint inhibitors is addressed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/imt-2016-0112 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!