Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lithium superionic conductor (LISICON)-related compositions LiSiXO (X = P, Al, or Ge) are important materials that have been identified as potential solid electrolytes for all solid state batteries. Here, we show that the room temperature lithium ion conductivity can be improved by several orders of magnitude through substitution on Si sites. We apply a combined computer simulation and experimental approach to a wide range of compositions (LiSiO, LiSiPO, LiSiAlO, LiAlSiPO, and LiAlSiGePO) which include new doped materials. Depending on the temperature, three different Li ion diffusion mechanisms are observed. The polyanion mixing introduced by substitution lowers the temperature at which the transition to a superionic state with high Li ion conductivity occurs. These insights help to rationalize the mechanism of the lithium ion conductivity enhancement and provide strategies for designing materials with promising transport properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b14402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!