Faba bean has gained increasing attention from the food industry and the consumers mainly due to the quality of its protein fraction. Fermentation has been recently recognized as the most efficient tool for improving its nutritional and organoleptic properties. In this study, faba bean flour fermented with Lactobacillus plantarum DPPMAB24W was used to fortify semolina pasta. Pasta samples including different percentages of fermented faba bean flour were produced at the pilot-plant level and characterized using an integrated approach for chemical, nutritional, technological, and sensory features. At a substitution level of 30%, pasta had a more homogeneous texture and lower cooking loss compared to 50% addition. The impact of faba bean flour addition on pasta technological functionality, particularly of the protein fraction, was also assessed by scanning electron microscopy and textural profile analysis. Compared to traditional (semolina) pasta and pasta containing unfermented faba bean flour, the nutritional profile (in vitro protein digestibility and nutritional indexes - chemical score (CS), sequence of limiting essential amino acids, Essential Amino Acid Index (EAAI), Biological Value (BV), Protein Efficiency Ratio (PER), and Nutritional Index (NI)) and the resistant starch content of pasta containing 30% fermented faba bean flour markedly improved, while the starch hydrolysis rate decreased, without negatively affecting technological and sensory features. The use of fermentation technology appears to be a promising tool to enhance the quality of pasta and to promote the use of faba bean flour.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6fo01808dDOI Listing

Publication Analysis

Top Keywords

faba bean
32
bean flour
28
fermented faba
12
technological sensory
12
pasta
9
faba
8
bean
8
flour nutritional
8
nutritional technological
8
protein fraction
8

Similar Publications

Evaluating a Soil Amendment for Cadmium Mitigation and Enhanced Nutritional Quality in Faba Bean Genotypes: Implications for Food Safety.

Plants (Basel)

January 2025

Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.

Soil amendments combined with low cadmium (Cd)-accumulating crops are commonly used for remediating Cd contamination and ensuring food safety. However, the combined effects of soil amendments and the cultivation of faba beans ( L.)-known for their high nutritional quality and low Cd accumulation-in moderately Cd-contaminated soils remain underexplored.

View Article and Find Full Text PDF

We aimed to synthesize silver nanoparticles (AgNPs) using (cardamom) extracts and assess the cytotoxicity and genotoxicity of the cardamom extract, -AgNPs, and the insecticide ATCBRA-commonly used for pest control-on the root system of (broad bean). The chemical composition of the aqueous cardamom extract was identified and quantified using GC-MS, revealing a variety of bioactive compounds also present in cardamom essential oil. These included α-terpinyl acetate (21.

View Article and Find Full Text PDF

A soluble fraction of faba bean protein was conjugated with tannic acid via the free-radical grafting method using a mixture of ascorbic acid and hydrogen peroxide. Surface plasmon resonance showed a strong bonding between them, while the free amino and thiol group measurements indicated tannic acid's bonding with the amino groups and cysteine residues on the proteins. Structural analysis using intrinsic fluorescence and surface hydrophobicity demonstrated tannic acid's interaction with the aromatic and hydrophobic amino acids of the protein.

View Article and Find Full Text PDF

Proximate composition, peptide characterization and bioactive properties of faba bean blanching water.

Food Res Int

January 2025

The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand.

Faba bean (Vicia faba L.) offers a rich nutritional profile with high protein content and abundant vitamins and minerals. Processing of faba beans for freezing requires blanching, yielding liluva (legume processing water), possibly containing leached macronutrients, with potential for upcycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!