Probing dark exciton diffusion using photovoltage.

Nat Commun

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA.

Published: January 2017

The migration of weakly and non-luminescent (dark) excitons remains an understudied subset of exciton dynamics in molecular thin films. Inaccessible via photoluminescence, these states are often probed using photocurrent methods that require efficient charge collection. Here we probe exciton harvesting in both luminescent and dark materials using a photovoltage-based technique. Transient photovoltage permits a real-time measurement of the number of charges in an organic photovoltaic cell, while avoiding non-geminate recombination losses. The extracted exciton diffusion lengths are found to be similar to those determined using photocurrent. For the luminescent material boron subphthalocyanine chloride, the photovoltage determined diffusion length is less than that extracted from photoluminescence. This indicates that while photovoltage circumvents non-geminate losses, geminate recombination at the donor-acceptor interface remains the primary recombination pathway. Photovoltage thus offers a general approach for extracting a device-relevant diffusion length, while also providing insight in to the dominant carrier recombination pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5290169PMC
http://dx.doi.org/10.1038/ncomms14215DOI Listing

Publication Analysis

Top Keywords

exciton diffusion
8
diffusion length
8
photovoltage
5
probing dark
4
exciton
4
dark exciton
4
diffusion
4
diffusion photovoltage
4
photovoltage migration
4
migration weakly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!