Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Optimal pit and fissure sealing is determined by surface preparation techniques and choice of materials. The performance of pit and fissure sealant materials has been intensively investigated, yet no single product is reported as an ideal sealant. In children, moisture control during cavity preparation is always a big challenge, and hence, hydrophilic sealants have been developed.
Aim: To compare the microleakage and penetration depth of hydrophilic and hydrophobic sealants using acid-etching on dry and moist surfaces.
Materials And Methods: Recently, extracted 28 2nd primary molars are assigned to two groups (hydrophobic group I; hydrophilic group II) depending on the surface condition (dry group: A1 and B1; moist group: A2 and B2) of 7 teeth in each group. Samples from group A1 and B1 are cleaned and dried with a 3-way syringe and etched with etching gel, and sealant is applied to the fissures and cured with visible light. Sample from A2 and B2 are immersed in 0.1 mL of fresh whole human saliva for 20 seconds and dried using a pellet cotton, and the same procedure is carried out. All samples are subjected to 1000 thermal cycles and sectioned to compare the depth of penetration and microleakage. Sections will be examined under light microscope and analyzed using an image analysis software (SigmaScan).
Results: The least microleakage was seen with hydrophilic sealant under moist surface condition, and the depth of penetration of hydrophobic sealant was found to be better than that of hydrophilic sealant in both dry and moist surface conditions.
Conclusion: Hydrophilic pit and fissure sealants showed higher tolerance to saliva contamination with less microleakage, but in terms of penetration ability hydrophobic sealants were found to be superior.
How To Cite This Article: Gawali PN, Chaugule VB, Panse AM. Comparison of Microleakage and Penetration Depth between Hydrophilic and Hydrophobic Sealants in Primary Second Molar. Int J Clin Pediatr Dent 2016;9(4):291-295.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5233693 | PMC |
http://dx.doi.org/10.5005/jp-journals-10005-1380 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!