Some epidemiological studies indicate that mobile phones cause glioblastomas in humans. Since it is known that genomic instability plays a key role in the etiology of cancer, we investigated the effects of the universal mobile telecommunications system radiofrequency (UMTS-RF) signal, which is used in "smart" phones, on micronucleus (MN) formation and other anomalies such as nuclear buds (NBUDs) and nucleoplasmatic bridges (NPBs). MN are formed by structural and numerical aberrations, NBs reflect gene amplification and NPBs are formed from dicentric chromosomes. The experiments were conducted with human glioblastoma cell lines, which differ in regard to their p53 status, namely U87 (wild-type) and U251 (mutated). The cells were cultivated for 16h in presence and absence of fetal calf serum and exposed to different SAR doses (0.25, 0.50 and 1.00W/kg), which reflect the exposure of humans, in presence and absence of mitomycin C as former studies indicate that RF may cause synergistic effects in combination with this drug. We found no evidence for induction of MN and other anomalies. However, with the highest dose, induction of apoptosis was observed in U251 cells on the basis of the morphological features of the cells. Our findings indicate that the UMTS-RF signal does not cause chromosomal damage in glioblastoma cells; the mechanisms which lead to induction of programmed cell death will be investigated in further studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2017.01.012DOI Listing

Publication Analysis

Top Keywords

human glioblastoma
8
glioblastoma cell
8
cell lines
8
studies indicate
8
umts-rf signal
8
npbs formed
8
presence absence
8
evaluation potential
4
potential mobile
4
mobile phone
4

Similar Publications

The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).

View Article and Find Full Text PDF

Limited advancements in managing malignant brain tumors have resulted in poor prognoses for glioblastoma (GBM) patients. Standard treatment involves surgery, radiotherapy, and chemotherapy, which lack specificity and damage healthy brain tissue. Boron-containing compounds, such as boric acid (BA), exhibit diverse biological effects, including anticancer properties.

View Article and Find Full Text PDF

The foremost feature of glioblastoma (GBM), the most frequent malignant brain tumours in adults, is a remarkable degree of intra- and inter-tumour heterogeneity reflecting the coexistence within the tumour bulk of different cell populations displaying distinctive genetic and transcriptomic profiles. GBM with primitive neuronal component (PNC), recently identified by DNA methylation-based classification as a peculiar GBM subtype (GBM-PNC), is a poorly recognized and aggressive GBM variant characterised by nodules containing cells with primitive neuronal differentiation along with conventional GBM areas. In addition, the presence of a PNC component has been also reported in IDH-mutant high-grade gliomas (HGGs), and to a lesser extent to other HGGs, suggesting that regardless from being IDH-mutant or IDH-wildtype, peculiar genetic and/or epigenetic events may contribute to the phenotypic skewing with the emergence of the PNC phenotype.

View Article and Find Full Text PDF

Brain-wide neuronal circuit connectome of human glioblastoma.

Nature

January 2025

Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Glioblastoma (GBM) infiltrates the brain and can be synaptically innervated by neurons, which drives tumor progression. Synaptic inputs onto GBM cells identified so far are largely short-range and glutamatergic. The extent of GBM integration into the brain-wide neuronal circuitry remains unclear.

View Article and Find Full Text PDF

Objective: Communicating hydrocephalus (CH) is an uncommon complication that can affect patients with glioblastoma (GBM). Due to its clinical and radiological findings, it presents as a chronic hydrocephalus. The mechanisms underlying its occurrence and impact on the prognosis of the disease are poorly known, but some studies have suggested that shunting can have a positive impact on the quality of life of these patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!