Wastewater generated from wet processing of coffee cherries degrades stream water quality downstream of processing mills and impacts human health. The widespread popularity of coffee as an export makes this a global problem, although the immediate impact is local. Approximately 40% of all coffee around the world is wet processed, producing wastewater rich in organic nutrients that can be hazardous to aquatic systems. Moringa Oleifera Seed Extract (MOSE) offers promise as a local and affordable "appropriate" coagulation technology for aiding in the treatment of coffee wastewater. Field research was conducted at the Kauai Coffee Company to investigate the application of MOSE to treat coffee fermentation wastewater (CFW). Coagulation tests were conducted at five pH CFW levels (3-7) and MOSE doses (0-4g/L). After settling, TSS, COD, nitrate, nitrite, total nitrogen, and pH of supernatant from each test were measured. MOSE reduced TSS, COD, nitrate, and nitrite in CFW to varying degrees dependent on pH and dose applied. TSS removal ranged from 8% to 54%. Insoluble COD removal ranged from 26% to 100% and total COD removal ranged from 1% to 25%. Nitrate and nitrite reduction ranged from 20% to 100%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2017.01.006 | DOI Listing |
Unlabelled: The intestinal diarrheal pathogen colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability.
View Article and Find Full Text PDFJ Environ Qual
January 2025
Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P.R. China.
is a common microorganism in the human gut that has been linked to health benefits. Furthermore, it is an emerging synthetic biology chassis with the potential to be modified into diagnostic or therapeutic engineered probiotics. However, the absence of biological components limits its further applications.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan. Electronic address:
The toxicity of nitrite is an issue that cannot be overlooked in nitrogen pollution within aquaculture. A highly efficient bacterium capable of simultaneous nitrification and denitrification was screened from natto, and its 16S rRNA gene sequence was compared to existing records, confirming its identification as Bacillus subtilis sp. N4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!