Background And Objective: Unlike Burkitt lymphoma, molecular abnormalities other than C-MYC rearrangements have scarcely been studied in patients with mature B acute lymphoblastic leukemia (B-ALL). The aim of this study was to analyze the frequency and prognostic significance of copy number alterations (CNA) in genes involved in lymphoid differentiation, cell cycle and tumor suppression in adult patients with B-ALL.
Patients And Methods: We have analyzed by multiplex ligation-dependent probe amplification the genetic material from bone marrow at diagnosis from 25 adult B-ALL patients treated with rituximab and specific chemotherapy.
Results: The most frequent CNA were alterations in the 14q32.33 region (11 cases, 44%) followed by alterations in the cell cycle regulator genes CDKN2A/B and RB1 (16%). No correlation between the presence of specific CNA and the clinical-biologic features or the response to therapy was found.
Conclusions: The high frequency of CNA in the 14q32.33 region, CDKN2A/B and RB1 found in our study could contribute to the aggressiveness and invasiveness of mature B-ALL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medcli.2016.07.035 | DOI Listing |
LINE-1 (L1) retrotransposition is widespread in many cancers, especially those with a high burden of chromosomal rearrangements. However, whether and to what degree L1 activity directly impacts genome integrity is unclear. Here, we apply whole-genome sequencing to experimental models of L1 expression to comprehensively define the spectrum of genomic changes caused by L1.
View Article and Find Full Text PDFProgesterone receptors (PR) can regulate transcription by RNA Polymerase III (Pol III), which transcribes small non-coding RNAs, including all transfer RNAs (tRNAs). We have previously demonstrated that PR is associated with the Pol III complex at tRNA genes and that progestins downregulate tRNA transcripts in breast tumor models. To further elucidate the mechanism of PR-mediated regulation of Pol III, we studied the interplay between PR, the Pol III repressor Maf1, and TFIIIB, a core transcription component.
View Article and Find Full Text PDFFront Cell Neurosci
December 2024
Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States.
Introduction: Diabetes is a metabolic disorder of glucose homeostasis that is a significant risk factor for neurodegenerative diseases, such as Alzheimer's disease, as well as mood disorders, which often precede neurodegenerative conditions. We examined the medial habenulainterpeduncular nucleus (MHb-IPN), as this circuit plays crucial roles in mood regulation, has been linked to the development of diabetes after smoking, and is rich in cholinergic neurons, which are affected in other brain areas in Alzheimer's disease.
Methods: This study aimed to investigate the impact of streptozotocin (STZ)-induced hyperglycemia, a type 1 diabetes model, on mitochondrial and lipid homeostasis in 4% paraformaldehyde-fixed sections from the MHb and IPN of C57BL/6 J male mice, using a recently developed automated pipeline for mitochondrial analysis in confocal images.
Elife
January 2025
John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
Obligate parasites often trigger significant changes in their hosts to facilitate transmission to new hosts. The molecular mechanisms behind these extended phenotypes - where genetic information of one organism is manifested as traits in another - remain largely unclear. This study explores the role of the virulence protein SAP54, produced by parasitic phytoplasmas, in attracting leafhopper vectors.
View Article and Find Full Text PDFMol Carcinog
January 2025
Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
A-to-I RNA editing is a pervasive mechanism in the human genome that affects the regulation of gene expression and is closely associated with the pathogenesis of numerous diseases. This study elucidates the regulatory mechanism of A-to-I edited miR-1304-3p in esophageal squamous cell carcinoma (ESCC). Western blot, immunohistochemistry, and RT-qPCR assays were employed to quantify protein and mRNA expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!