Background: Germline chromothripsis causes complex genomic rearrangements that are likely to affect multiple genes and their regulatory contexts. The contribution of individual rearrangements and affected genes to the phenotypes of patients with complex germline genomic rearrangements is generally unknown.
Methods: To dissect the impact of germline chromothripsis in a relevant developmental context, we performed trio-based RNA expression analysis on blood cells, induced pluripotent stem cells (iPSCs), and iPSC-derived neuronal cells from a patient with de novo germline chromothripsis and both healthy parents. In addition, Hi-C and 4C-seq experiments were performed to determine the effects of the genomic rearrangements on transcription regulation of genes in the proximity of the breakpoint junctions.
Results: Sixty-seven genes are located within 1 Mb of the complex chromothripsis rearrangements involving 17 breakpoints on four chromosomes. We find that three of these genes (FOXP1, DPYD, and TWIST1) are both associated with developmental disorders and differentially expressed in the patient. Interestingly, the effect on TWIST1 expression was exclusively detectable in the patient's iPSC-derived neuronal cells, stressing the need for studying developmental disorders in the biologically relevant context. Chromosome conformation capture analyses show that TWIST1 lost genomic interactions with several enhancers due to the chromothripsis event, which likely led to deregulation of TWIST1 expression and contributed to the patient's craniosynostosis phenotype.
Conclusions: We demonstrate that a combination of patient-derived iPSC differentiation and trio-based molecular profiling is a powerful approach to improve the interpretation of pathogenic complex genomic rearrangements. Here we have applied this approach to identify misexpression of TWIST1, FOXP1, and DPYD as key contributors to the complex congenital phenotype resulting from germline chromothripsis rearrangements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270341 | PMC |
http://dx.doi.org/10.1186/s13073-017-0399-z | DOI Listing |
Mol Cytogenet
August 2024
Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Background: Chromoanagenesis is an umbrella term used to describe catastrophic "all at once" cellular events leading to the chaotic reconstruction of chromosomes. It is characterized by numerous rearrangements involving a small number of chromosomes/loci, copy number gains in combination with deletions, reconstruction of chromosomal fragments with improper order/orientation, and preserved heterozygosity in copy number neutral regions. Chromoanagesis is frequently described in association with cancer; however, it has also been described in the germline.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2024
Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060 Tianjin, China.
Hum Genet
October 2023
Division of Molecular Genetics, Center for Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
Constitutional complex chromosomal rearrangements (CCRs) are rare cytogenetic aberrations arising in the germline via an unknown mechanism. Here we analyzed the breakpoint junctions of microscopically three-way or more complex translocations using comprehensive genomic and epigenomic analyses. All of these translocation junctions showed submicroscopic genomic complexity reminiscent of chromothripsis.
View Article and Find Full Text PDFInt J Mol Sci
June 2023
Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil.
Osteosarcoma (OS) is the most prevalent type of bone tumor, but slow progress has been achieved in disentangling the full set of genomic events involved in its initiation and progression. We assessed by NGS the mutational spectrum of 28 primary OSs from Brazilian patients, and identified 445 potentially deleterious SNVs/indels and 1176 copy number alterations (CNAs). was the most recurrently mutated gene, with an overall rate of ~60%, considering SNVs/indels and CNAs.
View Article and Find Full Text PDFOnco Targets Ther
July 2023
Medical Oncology Department, Jiangsu Province Hospital, Nanjing, Jiangsu, 210029, People's Republic of China.
Intergenic-gene fusion detected by DNA-seq is particularly confusing for drug selection since the function of the intergenic region located upstream is unknown. We reported a case of a 49-year-old male with advanced lung adenocarcinoma, who was detected FBXO11 (intergenic)-ALK (exon 20-29) by DNA-seq, and FISH analysis revealed a positive result. The patient was treated with crizotinib and achieved a PR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!