A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pituitary Adenylate Cyclase-Activating Peptide (PACAP), a Novel Secretagogue, Regulates Secreted Morphogens in Newborn Rat Retina. | LitMetric

Pituitary Adenylate Cyclase-Activating Peptide (PACAP), a Novel Secretagogue, Regulates Secreted Morphogens in Newborn Rat Retina.

Invest Ophthalmol Vis Sci

Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary 3Neurobiology Research Group, János Szentágothai Research Center, Pécs, Hungary.

Published: January 2017

Purpose: Pituitary adenylate cyclase-activating peptide (PACAP)1-38 has been reported to be responsible for regulation of a disparate array of developmental processes in the central nervous system, and its antiapoptotic effect has been revealed in numerous models, pointing to its relevance in the etiology of neurodegenerative disorders. However, its function in retinal development remains unclear. Here, we aimed to point out that versatility can be achieved through interaction with other regulators, in which PACAP can act indirectly on the retinal microenvironment.

Methods: Wistar rats at age postnatal day 1 were injected intravitreally with PACAP or PAC1 receptor antagonist (PACAP6-38, M65) or VPAC1 antagonist (PG97-269) alone or in combination. Retinas were removed at 3, 6, 12, or 24 hours after injection. Changes in mRNA level were assessed using quantitative PCR, whereas changes in protein levels were measured by Western blot.

Results: Intravitreal injection of PACAP or PAC1 receptor antagonists or the VPAC1 antagonist showed that PACAP receptors regulate the expression of five key secreted molecules (i.e., Fgf1, Bmp4, Wnt1, Gdf3, and Ihh), wherease other crucial morphogens (i.e., Fgf2, Fgf4, Fgf8, Fgf9, Shh, and Bmp9) were not affected. Pharmacologic dissection revealed that both PAC1 and VPAC1 induced downstream signaling and could cause upregulation of Fgf1, Bmp4, and Wnt1, whereas expression of Gdf3 might be mediated through the VPAC2 receptor.

Conclusions: Our data are the first to shed light on PACAP as a secretagogue regulating a sustained production of morphogens, which in turn could enable PACAP to serve as a mitogen for retinal cells, to induce ganglion cell differentiation, and to contribute to RPE development.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.16-20566DOI Listing

Publication Analysis

Top Keywords

pituitary adenylate
8
adenylate cyclase-activating
8
cyclase-activating peptide
8
pacap pac1
8
pac1 receptor
8
vpac1 antagonist
8
fgf1 bmp4
8
bmp4 wnt1
8
pacap
7
peptide pacap
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!