There has been growing interest in the use of edible nanoemulsions as delivery systems for lipophilic active substances, such as oil-soluble vitamins, antimicrobials, flavors, and nutraceuticals, because of their unique physicochemical properties. Oil-in-water nanoemulsions consist of oil droplets with diameters typically between approximately 30 and 200 nm that are dispersed within an aqueous medium. The small droplet size usually leads to an improvement in stability, gravitational separation, and aggregation. Moreover, the high droplet surface area associated with the small droplet size often leads to a high reactivity with biological cells and macromolecules. As a result, lipid digestibility and bioactive bioavailability are usually higher in nanoemulsions than conventional emulsions, which is an advantage for the development of bioactive delivery systems. In this review, the most important factors affecting nanoemulsion formation and stability are highlighted, and a critical analysis of the potential benefits of using nanoemulsions in food systems is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-food-030216-025908 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!