Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biomedical imaging systems incorporating both photoacoustic (PA) and ultrasound capabilities are of interest for obtaining optical and acoustic properties deep in tissue. While most dual-modality systems utilize piezoelectric transducers, all-optical systems can obtain broadband high-resolution data with hands-free operation. Previously described reflection-mode all-optical laser-ultrasound (LUS) systems use a confocal source and detector; however, angle-dependent raypaths are lost in this configuration. As a result, the overall imaging aperture is reduced, which becomes increasingly problematic with depth. We present a reflection-mode nonconfocal LUS and PA imaging system that uses signals recorded on all-optical hardware to create angle-dependent images. We use reverse-time migration and time reversal to reconstruct the LUS and PA images. We demonstrate this methodology with both a numerical model and tissue phantom experiment to image a steep-curvature vessel with a limited aperture 2-cm beneath the surface. Nonconfocal imaging demonstrates improved focusing by 30% and 15% compared to images acquired with a single LUS source in the numerical and experimental LUS images, respectively. The appearance of artifacts is also reduced. Complementary PA images are straightforward to acquire with the nonconfocal system by tuning the source wavelength and can be further developed for quantitative multiview PA imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.JBO.22.4.041014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!