The physical properties of doped multifunctional compounds are commonly tuned by controlling the amount of dopants, but this control is limited because all the properties are influenced simultaneously by this single parameter. Here, we present a strategy that enables the fine-tuning of a specific combination of properties by controlling the reduction of dopants. The feasibility of this approach was demonstrated by optimizing the near-IR photoluminescence of strontium titanate SrTiO :Ni for potential applications in biomedicine for a range of absorbance in the visible/near-IR region. We discussed how material properties, such as luminescence, conductivity, or photocatalytic properties can be designed by carefully controlling the ratio of dopants in different oxidation states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201605707 | DOI Listing |
Sci Rep
December 2024
Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, 34110, Qatar.
This study aims to modify raw zeolite with metal oxide nanocomposites to remove nickel (Ni) ions from synthetic wastewater. Novel zeolite-doped magnesium oxide (MgO), iron oxide (FeO), and zinc oxide (ZnO) nanocomposites were synthesized by hydrothermal-calcination methods. The novel zeolite-doped metal oxide nanocomposites were used as adsorbents to remove Ni (II) ions from synthetic wastewater.
View Article and Find Full Text PDFMikrochim Acta
December 2024
School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
A novel copper and iron doped containing chitosan and heparin sodium carbon dots (CS-Cu,Fe/HS) nanozyme was formulated through a single-step microwave digestion method. CS-Cu,Fe/HS exhibits excellent peroxidase (POD)-like activity and positive charge characteristics, and it can oxidize the negatively charged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of HO to produce a green compound (ox-ABTS). Furthermore, CS-Cu,Fe/HS enhances electron transfer and provides additional active sites through the valence state transformations of Fe/Fe and Cu/Cu.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland.
This article investigates the influence of dopant molecules on the structural and dynamic properties of lipid bilayers in liposomes, with a focus on the effects of dopant concentration, size, and introduced electric charge. Experimental studies were performed using electron paramagnetic resonance (EPR) spectroscopy with spin probes, complemented by Monte Carlo simulations. Liposomes, formed via lecithin sonication, were doped with compounds of varying concentrations and analyzed using EPR spectroscopy to assess changes in membrane rigidity.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China.
W-doped ZnO (WZO) films were deposited on glass substrates by using RF magnetron sputtering at different substrate bias voltages, and the relationships between microstructure and optical and electrical properties were investigated. The results revealed that the deposition rate of WZO films first decreased from 8.8 to 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!