Optical properties and oxidation of α-phase Ag-Al thin films.

Nanotechnology

Institute for Nanoscale Technology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.

Published: March 2017

We investigate a series of Ag-Al thin films containing up to 12 at% Al with the purpose of discovering whether these alloys would be a better choice for nanophotonic applications than pure Ag. Variable angle spectroscopic ellipsometry, AFM, x-ray diffraction and density functional theory are applied to explore and characterize the materials. Electromagnetic simulations of optical properties are used to place the results into a theoretical framework. We find that the increase in electron-to-atom ratio associated with the Al additions changes the optical properties: additions of the order of 1-2 at% Al are beneficial as they are associated with favorable changes in the dielectric function, but for greater additions of Al there is a flattening of the absorption edge and an increase in optical loss. In addition, contents of more than about 2 at% Al are associated with the onset of time-dependent intergranular oxidation, which causes a pronounced dip in the reflectance spectrum at about 2.3-2.4 eV (∼500-540 nm).

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aa5782DOI Listing

Publication Analysis

Top Keywords

optical properties
12
ag-al thin
8
thin films
8
optical
4
properties oxidation
4
oxidation α-phase
4
α-phase ag-al
4
films investigate
4
investigate series
4
series ag-al
4

Similar Publications

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.

View Article and Find Full Text PDF

In optical imaging of solid tumors, signal contrasts derived from inherent tissue temperature differences have been employed to distinguish tumor masses from surrounding tissue. Moreover, with the advancement of active infrared imaging, dynamic thermal characteristics in response to exogenous thermal modulation (heating and cooling) have been proposed as novel measures of tumor assessment. Contrast factors such as the average rate of temperature changes and thermal recovery time constants have been investigated through an active thermal modulation imaging approach, yielding promising tumor characterization results in a xenograft mouse model.

View Article and Find Full Text PDF

Liquid crystal elastomers (LCEs) with various deformation properties based on phase transition were widely used as actuators and provided potential to fabricate functional surfaces with tunable microstructure. Herein, we demonstrate a strategy to fabricate dynamic micro wrinkles on LCE surfaces based on LC phase transition. Stable micron-sized surface wrinkles on the anthracene-containing LCE film (AnLCE) are fabricated by ultraviolet exposure induced gradient cross-linking and subsequently stretching-releasing (UV-SR).

View Article and Find Full Text PDF

Phononic modulation of spin-lattice relaxation in molecular qubit frameworks.

Nat Commun

December 2024

Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China.

The solid-state integration of molecular electron spin qubits could promote the advancement of molecular quantum information science. With highly ordered structures and rational designability, microporous framework materials offer ideal matrices to host qubits. They exhibit tunable phonon dispersion relations and spin distributions, enabling optimization of essential qubit properties including the spin-lattice relaxation time (T) and decoherence time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!