The DNA damage response (DDR) arrests cell cycle progression until DNA lesions, like DNA double-strand breaks (DSBs), are repaired. The presence of DSBs in cells is usually detected by indirect techniques that rely on the accumulation of proteins at DSBs, as part of the DDR. Such detection may be biased, as some factors and their modifications may not reflect physical DNA damage. The dependency on DDR markers of DSB detection tools has left questions unanswered. In particular, it is known that senescent cells display persistent DDR foci, that we and others have proposed to be persistent DSBs, resistant to endogenous DNA repair activities. Others have proposed that these peculiar DDR foci might not be sites of damaged DNA per se but instead stable chromatin modifications, termed DNA-SCARS. Here, we developed a method, named 'DNA damage in situ ligation followed by proximity ligation assay' (DI-PLA) for the detection and imaging of DSBs in cells. DI-PLA is based on the capture of free DNA ends in fixed cells in situ, by ligation to biotinylated double-stranded DNA oligonucleotides, which are next recognized by antibiotin anti-bodies. Detection is enhanced by PLA with a partner DDR marker at the DSB. We validated DI-PLA by demonstrating its ability to detect DSBs induced by various genotoxic insults in cultured cells and tissues. Most importantly, by DI-PLA, we demonstrated that both senescent cells in culture and tissues from aged mammals retain true unrepaired DSBs associated with DDR markers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334542 | PMC |
http://dx.doi.org/10.1111/acel.12573 | DOI Listing |
Crit Care Sci
January 2025
Department of Physical Therapy, Universidade Federal de Uberlândia - Uberlândia (MG), Brazil.
Objective: To investigate the effects of lycopene supplementation on inflammation, lung histopathology and systemic DNA damage in an experimentally induced lung injury model, ventilated by conventional mechanical ventilation and high-frequency oscillatory ventilation, compared with a control group.
Methods: Fifty-five rabbits sampled by convenience were supplemented with 10mg/kg lycopene for 21 days prior to the experiment. Lung injury was induced by tracheal infusion of warm saline.
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality globally. While immunotherapeutic approaches are effective in a subset of CRC patients, the majority of CRC cases receive limited benefits from immunotherapy. This study developed an immune subtype classification system based on diverse immune cells and pathways.
View Article and Find Full Text PDFBioengineered
December 2025
Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Huai'an Hospital Affiliated to Yangzhou University, The Fifth People's Hospital of Huai'an), 1 Huaihe East Road, Huaiyin District, Huai'an City, Jiangsu Province, China.
Ginkgolide B (GB) is a bioactive constituent found in Ginkgo biloba leaves that has been long recognized as a protective agent against many neurological disorders. Our study aimed to examine the effect of GB in an in vitro Parkinson's disease (PD) model and to investigate its neuroprotective mechanism as a primary objective. SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium (MPP) to act as a PD-like model of neuronal damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!