AI Article Synopsis

  • Recent studies suggest that Averrhoa carambola L. juice (EACJ) can lower blood glucose levels in humans, but its specific mechanisms remain unclear.
  • In an experiment with diabetic mice induced by streptozotocin (STZ), EACJ was administered at various doses, leading to significant reductions in fasting blood glucose, cholesterol, and kidney injury markers.
  • EACJ treatment also improved kidney damage and decreased factors associated with diabetes progression, indicating its potential as a therapeutic option for hyperglycemia and diabetic nephropathy.

Article Abstract

Recently, many reports have shown that Averrhoa carambola L. (Oxalidaceae) juice (EACJ) could reduce blood glucose in humans. However, its mechanisms have not been well explored; therefore, our study aimed to investigate the beneficial effects of EACJ on hyperglycemia, hyperlipidemia and renal injury in streptozotocin (STZ)-induced diabetic mice. Those mice were injected with STZ via the tail vein (120 mg/kg body weight) and were identified as diabetic mice when the level of blood glucose was ≥ 11.1 mmol/L. Those mice were intragastriced gavage with saline, EACJ (25, 50, 100 g/kg body weight/d) and metformin (320 mg/kg body weight/d) for 21 days. The fasting blood glucose (FBG), free fatty acids (FFA), total cholesterol (TC), triglycerides (TG), Scr (CREA) and blood urea nitrogen (BUN) were significantly decreased, while the sorbitol dehydrogenase (SDH), Cyclic Adenosine monophosphate (cAMP), malondialdehyde (MDA), superoxide dismutase (SOD), and insulin were elevated. Diabetes-dependent alterations in the kidney, such as glomerular hypertrophy, thicken and tubular basement membrane, were improved after 21 days of EACJ treatment. Hyperglycemia, renal formation and the expressions of related proteins such as connective tissue growth factor (CTGF) and transforming growth factor beta 1 (TGF-β1) were markedly decreased by EACJ. These results indicate that EACJ treatment decrease hyperglycemia, hyperlipidemia and inhibit the progression of diabetic nephropathy (DN), which may be linked to regulating several pharmacological targets for treating or preventing DN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5250702PMC

Publication Analysis

Top Keywords

hyperglycemia hyperlipidemia
12
diabetic mice
12
blood glucose
12
averrhoa carambola
8
carambola oxalidaceae
8
oxalidaceae juice
8
mg/kg body
8
body weight/d
8
eacj treatment
8
growth factor
8

Similar Publications

Non-alcoholic steatohepatitis (NASH) is the most common cause of chronic liver diseases with its pathophysiological mechanism poorly understood. In this work, serological, histological, molecular biological, biochemical, and immunological methods were applied to explore the pathological significance and action of zinc finger protein 281 (ZFP281 in mouse, ZNF281 in human) and targeted strategies. We reported that ZFP281/ZNF281 abundance in hepatocytes was positively correlated with the progression of NASH.

View Article and Find Full Text PDF

Unlabelled: The present study evaluated the effects of 5-methyltetrahydrofolate (5-MTHF) and aqueous extract on diabetes. An in silico docking study with select bioactive compounds showed strong binding affinities of folates with glucose metabolism-related proteins. In vitro assay showed 5-MTHF's superior inhibitory activity on alpha-amylase compared to folic acid.

View Article and Find Full Text PDF

: Type 2 Diabetes Mellitus (T2DM) is associated with insulin resistance, hyperglycemia, and hyperlipidemia. Anthocyanins, which are natural antioxidants, have been reported to manage T2DM-related complications. However, the potential of anthocyanin-rich black wheat as a functional food for managing diabetes remains unexplored.

View Article and Find Full Text PDF

Bitter food, because of its unique taste, is not popular with the public, and is even considered to be difficult to swallow. By binding to specific sites of bitter receptors (26 hTAS2Rs), bitter compounds activate the downstream signaling pathways mediated by G protein, which convert chemical signals into electrical signals that are ultimately transmitted to the brain to produce the bitter perception. The intensity of bitterness is mainly determined by the hydrophobic recognition region of bitter receptors.

View Article and Find Full Text PDF

Metabolic syndrome (MS) is the medical term for the combination of at least three of the following factors: obesity, hyperlipidemia, hyperglycemia, insulin resistance, and hypertension. The spontaneously hypertensive rat (SHR) is an accepted animal model for the study of human MS that reveals all the features of the syndrome when fed high-fat, high-carbohydrate diets. The intake of high-fat diets in rats has been shown to produce brain neuropathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!