DHA blocks TPA-induced cell invasion by inhibiting MMP-9 expression via suppression of the PPAR-γ/NF-κB pathway in MCF-7 cells.

Oncol Lett

Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, Republic of Korea; Department of Oral Biochemistry, Institute of Biomaterials Implant, School of Dentistry, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea.

Published: January 2017

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is considered to have applications in cancer prevention and treatment. The beneficial effects of DHA against cancer metastasis are well established; however, the mechanisms underlying these effects in breast cancer are not clear. Cell invasion is critical for neoplastic metastasis, and involves the degradation of the extracellular matrix by matrix metalloproteinase (MMP)-9. The present study investigated the inhibitory effect of DHA on MMP-9 expression and cell invasion induced by 12--tetradecanoylphorbol-13-acetate (TPA) in the MCF-7 breast cancer cell line. DHA inhibited the TPA-induced activation of mitogen-activated protein kinase (MAPK) and the transcription of nuclear factor (NF)-κB, but did not inhibit the transcription of activator protein-1. DHA increased the activity of peroxisome proliferator-activated receptor (PPAR)-γ, an effect that was reversed by the application of the PPAR-γ antagonist GW9662. In addition, combined treatment with GW9662 and DHA increased NF-κB-related protein expression. These results indicate that DHA regulates MMP-9 expression and cell invasion via modulation of the MAPK signaling pathway and PPAR-γ/NF-κB activity. This suggests that DHA could be a potential therapeutic agent for the prevention of breast cancer metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5245160PMC
http://dx.doi.org/10.3892/ol.2016.5382DOI Listing

Publication Analysis

Top Keywords

cell invasion
16
mmp-9 expression
12
breast cancer
12
dha
9
cancer metastasis
8
expression cell
8
dha increased
8
cell
5
cancer
5
dha blocks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!