Long-term neurological deficits due to immature cortical development are emerging as a major challenge in congenital heart disease (CHD). However, cellular mechanisms underlying dysregulation of perinatal corticogenesis in CHD remain elusive. The subventricular zone (SVZ) represents the largest postnatal niche of neural stem/progenitor cells (NSPCs). We show that the piglet SVZ resembles its human counterpart and displays robust postnatal neurogenesis. We present evidence that SVZ NSPCs migrate to the frontal cortex and differentiate into interneurons in a region-specific manner. Hypoxic exposure of the gyrencephalic piglet brain recapitulates CHD-induced impaired cortical development. Hypoxia reduces proliferation and neurogenesis in the SVZ, which is accompanied by reduced cortical growth. We demonstrate a similar reduction in neuroblasts within the SVZ of human infants born with CHD. Our findings demonstrate that SVZ NSPCs contribute to perinatal corticogenesis and suggest that restoration of SVZ NSPCs' neurogenic potential is a candidate therapeutic target for improving cortical growth in CHD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467873PMC
http://dx.doi.org/10.1126/scitranslmed.aah7029DOI Listing

Publication Analysis

Top Keywords

cortical growth
12
congenital heart
8
heart disease
8
cortical development
8
perinatal corticogenesis
8
svz nspcs
8
svz
7
cortical
5
abnormal neurogenesis
4
neurogenesis cortical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!