The ability to assess the distribution and extent of tau pathology in Alzheimer's disease and progressive supranuclear palsy in vivo would help to develop biomarkers for these tauopathies and clinical trials of disease-modifying therapies. New radioligands for positron emission tomography have generated considerable interest, and controversy, in their potential as tau biomarkers. We assessed the radiotracer 18F-AV-1451 with positron emission tomography imaging to compare the distribution and intensity of tau pathology in 15 patients with Alzheimer's pathology (including amyloid-positive mild cognitive impairment), 19 patients with progressive supranuclear palsy, and 13 age- and sex-matched controls. Regional analysis of variance and a support vector machine were used to compare and discriminate the clinical groups, respectively. We also examined the 18F-AV-1451 autoradiographic binding in post-mortem tissue from patients with Alzheimer's disease, progressive supranuclear palsy, and a control case to assess the 18F-AV-1451 binding specificity to Alzheimer's and non-Alzheimer's tau pathology. There was increased 18F-AV-1451 binding in multiple regions in living patients with Alzheimer's disease and progressive supranuclear palsy relative to controls [main effect of group, F(2,41) = 17.5, P < 0.0001; region of interest × group interaction, F(2,68) = 7.5, P < 0.00001]. More specifically, 18F-AV-1451 binding was significantly increased in patients with Alzheimer's disease, relative to patients with progressive supranuclear palsy and with control subjects, in the hippocampus and in occipital, parietal, temporal, and frontal cortices (t's > 2.2, P's < 0.04). Conversely, in patients with progressive supranuclear palsy, relative to patients with Alzheimer's disease, 18F-AV-1451 binding was elevated in the midbrain (t = 2.1, P < 0.04); while patients with progressive supranuclear palsy showed, relative to controls, increased 18F-AV-1451 uptake in the putamen, pallidum, thalamus, midbrain, and in the dentate nucleus of the cerebellum (t's > 2.7, P's < 0.02). The support vector machine assigned patients' diagnoses with 94% accuracy. The post-mortem autoradiographic data showed that 18F-AV-1451 strongly bound to Alzheimer-related tau pathology, but less specifically in progressive supranuclear palsy. 18F-AV-1451 binding to the basal ganglia was strong in all groups in vivo. Postmortem histochemical staining showed absence of neuromelanin-containing cells in the basal ganglia, indicating that off-target binding to neuromelanin is an insufficient explanation of 18F-AV-1451 positron emission tomography data in vivo, at least in the basal ganglia. Overall, we confirm the potential of 18F-AV-1451 as a heuristic biomarker, but caution is indicated in the neuropathological interpretation of its binding. Off-target binding may contribute to disease profiles of 18F-AV-1451 positron emission tomography, especially in primary tauopathies such as progressive supranuclear palsy. We suggest that 18F-AV-1451 positron emission tomography is a useful biomarker to assess tau pathology in Alzheimer's disease and to distinguish it from other tauopathies with distinct clinical and pathological characteristics such as progressive supranuclear palsy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382948PMC
http://dx.doi.org/10.1093/brain/aww340DOI Listing

Publication Analysis

Top Keywords

progressive supranuclear
44
supranuclear palsy
44
alzheimer's disease
28
positron emission
24
emission tomography
24
18f-av-1451 positron
20
tau pathology
20
patients alzheimer's
20
18f-av-1451 binding
20
disease progressive
16

Similar Publications

Although Alzheimer disease neuropathologic change (ADNC) is the most common pathology underlying clinical dementia, the presence of multiple comorbid neuropathologies is increasingly being recognized as a major contributor to the worldwide dementia burden. We analyzed 1051 subjects with specific combinations of isolated and mixed pathologies and conducted multivariate logistic regression analysis on a cohort of 4624 cases with mixed pathologies to systematically explore the independent cognitive contributions of each pathology. Alzheimer disease neuropathologic change and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) were both associated with a primary clinical diagnosis of Alzheimer disease (AD) and were characterized by an amnestic dementia phenotype, while only ADNC associated with logopenic variant primary progressive aphasia (PPA).

View Article and Find Full Text PDF

Rapid Cognitive Deterioration in Progressive Supranuclear Palsy: A 1-Year Follow-Up Study.

Mov Disord Clin Pract

December 2024

Department of Neurology, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China.

Background: Nowadays, cognitive impairment has been characterized as one of the most vital clinical symptoms in progressive supranuclear palsy (PSP).

Objectives: Based on a relatively large cohort, we aimed to show the cognitive deterioration in different PSP subtypes during 1-year follow-up and investigate potential contributors for disease prognosis.

Methods: One hundred seventeen patients from Progressive Supranuclear Palsy Neuroimage Initiative (PSPNI) cohort underwent neuropsychological tests and 1-year follow-up, with 73 diagnosed as PSP-Richardson syndrome (PSP-RS) and 44 as PSP-non-RS.

View Article and Find Full Text PDF

Parkinsonian syndromes are characterised by similar motor-related symptomology resulting from dopaminergic neuron damage. While Parkinson's disease (PD) is the most prevalent parkinsonism, we also focus on two other variants, Progressive supranuclear palsy (PSP) and Corticobasal degeneration (CBD). Due to the clinical similarities of these parkinsonisms, and since definite diagnoses are only possible post-mortem, effective therapies and novel biomarkers of disease are scarce.

View Article and Find Full Text PDF

Introduction: Progressive supranuclear palsy (PSP) involves midbrain structures, including the red nucleus (RN), an iron-rich region that appears as a high-contrast area on quantitative susceptibility mapping (QSM). RN may serve as a promising biomarker for differentiating parkinsonism. However, RN deformation in PSP remains elusive.

View Article and Find Full Text PDF

Mutations in sequestosome 1 (SQSTM1) gene have been associated with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia - ALS (FTD-ALS), and very recently, progressive supranuclear palsy (PSP), paget disease of bone (PDB), distal myopathy with rimmed vacuoles (DMRV), and neurodegenerative disorders in childhood. We present a case of right temporal variant of FTD (rtvFTD) with heterozygous mutation (c.823_824del(p.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!