Constructed wetlands are currently recognized as an effective environmental biotechnology for wastewater treatment, but the influence of their design parameters on internal functioning and contaminant removal efficiency is still under discussion. In this work, the effect of aspect ratio and water depth on bacteria communities as well as treatment efficiency of horizontal subsurface flow constructed wetlands (HSSF) under the Mediterranean climate was evaluated, using a mathematical model. For this purpose, experimental results from four pilot-scale wetlands of equal surface area but different aspect ratios and water depth were used. The HSSF system was fed with municipal wastewater. The experimental data were simulated using the BIO_PORE model, developed in the COMSOL Multiphysics™ platform. Simulations with the BIO_PORE model fitted well to the experimental results, showing a higher removal efficiency for the shallower HSSF for COD (93.7% removal efficiency) and ammonia nitrogen (73.8%). The aspect ratio had a weak relationship with the bacteria distribution and the removal efficiency. In contrast, the water depth was a factor. The results of the present study confirm a previous hypothesis in which depth has an important impact on the biochemical reactions causing contaminants transformation and degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.01.014 | DOI Listing |
Efficient visual word recognition presumably relies on orthographic prediction error (oPE) representations. On the basis of a transparent neurocognitive computational model rooted in the principles of the predictive coding framework, we postulated that readers optimize their percept by removing redundant visual signals, allowing them to focus on the informative aspects of the sensory input (i.e.
View Article and Find Full Text PDFChemistry
January 2025
State Key Laboratory of NBC Protection for Civilian, State Key Laboratory of NBC Protection for Civilian,, Beijing, CHINA.
The root ducts play an important role in the plant's transport of nutrients from the soil. Based on the selective transport characteristics of plant roots, amino pillar[6]arene bionic porous root sub-nano channel membrane were constructed to remove Imazamox. Imazamox (IM) is an effective imidazolinone herbicide frequently utilized in soybean fields to control a wide range of annual grasses and broad-leaved weeds.
View Article and Find Full Text PDFNanoscale
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
High salinity in wastewater often hampers the performance of traditional adsorbents by disrupting electrostatic interactions and ion exchange processes, limiting their efficiency. This study addresses these challenges by investigating the salt-promoted adsorption of Cu ions onto amino-functionalized chloromethylated polystyrene (EDA@CMPS) millispheres. The adsorbent was synthesized by grafting ethylenediamine (EDA) onto CMPS, which significantly improved Cu adsorption, achieving nearly three times the capacity in saline solutions (1.
View Article and Find Full Text PDFClin Chem Lab Med
January 2025
School of Dentistry and Medical Science, Faculty of Science and Health, 110481 Charles Sturt University, Wagga Wagga, NSW, Australia.
This scoping review focuses on the evolution of pre-analytical errors (PAEs) in medical laboratories, a critical area with significant implications for patient care, healthcare costs, hospital length of stay, and operational efficiency. The Covidence Review tool was used to formulate the keywords, and then a comprehensive literature search was performed using several databases, importing the search results directly into Covidence (n=379). Title, abstract screening, duplicate removal, and full-text screening were done.
View Article and Find Full Text PDFLangmuir
January 2025
Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, GR-65404 Kavala, Greece.
The remediation of wastewaters contaminated with dyes (discharged mainly from industry) is very important for preserving environmental quality and human health. In this study, a new composite chitosan (CS)-based adsorbent combined with activated carbon (AC) and curcumin (Cur) (abbreviated hereafter as CS/AC@Cur) in three different ratios (12.5%, 25%, and 50%) was synthesized for the removal of anionic [reactive black 5 (RB5)] and cationic [methylene blue (MB)] dyes in single-component or binary systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!