A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Physical Model for Stabilization and Repair of Trans-endothelial Apertures. | LitMetric

Physical Model for Stabilization and Repair of Trans-endothelial Apertures.

Biophys J

Department of Biology, Israel Institute of Technology, Haifa, Israel. Electronic address:

Published: January 2017

Bacterial toxins that disrupt the stability of contractile structures in endothelial cells promote the opening of large-scale apertures, thereby breaching the endothelium barrier. These apertures are formed by fusion of the basal and apical membranes into a tunnel that spans the height of the cell. Subsequent to the aperture formation, an active repair process, driven by a stimulated polymerization of actin, results in asymmetrical membrane protrusions and, ultimately, the closure of the aperture. Here, we propose a physics-based model for the generation, stabilization and repair of trans-endothelial apertures. Our model is based on the mechanical interplay between tension in the plasma membrane and stresses that develop within different actin structures at the aperture's periphery. We suggest that accumulation of cytoskeletal fragments around the aperture's rim during the expansion phase results in parallel bundles of actin filaments and myosin motors, generating progressively greater contraction forces that resist further expansion of the aperture. Our results indicate that closure of the tunnel is driven by mechanical stresses that develop within a cross-linked actin gel that forms at localized regions of the aperture periphery. We show that stresses within the gel are due to continuous polymerization of actin filaments against the membrane surfaces of the aperture's edges. Based on our mechanical model, we construct a dynamic simulation of the aperture repair process. Our model fully accounts for the phenomenology of the trans-endothelial aperture formation and stabilization, and recaptures the experimentally observed asymmetry of the intermediate aperture shapes during closure. We make experimentally testable predictions for localization of myosin motors to the tunnel periphery and of adhesion complexes to the edges of apertures undergoing closure, and we estimate the minimal nucleation size of cross-linked actin gel that can lead to a successful repair of the aperture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266200PMC
http://dx.doi.org/10.1016/j.bpj.2016.11.3207DOI Listing

Publication Analysis

Top Keywords

stabilization repair
8
repair trans-endothelial
8
trans-endothelial apertures
8
aperture
8
aperture formation
8
repair process
8
polymerization actin
8
based mechanical
8
stresses develop
8
actin filaments
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!