The effects of adding the biosurfactant rhamnolipid, the lignolytic and cellulolytic fungus Phanerochete chrysosporium, and the free-living nitrogen-fixing bacterium Azotobacter chrococcum on vermicomposting of green waste with Eisenia fetida was investigated. The addition of rhamnolipid and/or either microorganism alone or in all combinations significantly increased E. fetida growth rate, the number of E. fetida juveniles and cocoons, the population densities of cellulolytic fungi and Azotobacter bacteria, and cellulase and urease activities in the vermicomposts. The quality of the final vermicompost (in terms of electrical conductivity, nutrient content, C/N ratio, humic acid content, lignin and cellulose contents, and phytotoxicity to germinating seeds) was enhanced by addition of rhamnolipid and/or microorganisms. The physical characteristics of vermicomposts produced with rhamnolipid and/or microorganisms were acceptable for agricultural application. The best quality vermicompost was obtained with the combined addition of P. chrysosporium, A. chrococcum, and rhamnolipid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266304 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170820 | PLOS |
Int Microbiol
December 2024
Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Türkiye.
Metabolomics
December 2024
Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia.
Introduction: Burkholderia thailandensis E264 is a non-pathogenic soil bacterium that produces rhamnolipids (RLs), which are utilised in various fields. Although studies have illustrated changes in RLs congeners in response to environmental factors, studies on the influence of temperature on the RLs congeners produced by B. thailandensis E264 are scarce.
View Article and Find Full Text PDFJ Biomol Struct Dyn
February 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India.
is one of the opportunistic pathogens that may cause serious health problems and can produce several virulence factors, which are responsible for various infections, particularly in immunocompromised patients. They are responsible for producing infections on indwelling medical devices by attaching on to them and forming a biofilm. Antibiofilm, antivirulence, and gene expression studies of biofilm treated with esters of flavonols were evaluated.
View Article and Find Full Text PDFCrit Rev Anal Chem
December 2024
Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France.
In recent years, biosurfactants (BS) produced by various bacteria, fungi and yeast strains have attracted much interest because of their unique properties and potential applications in many industries ranging from bioremediation to agriculture and biomedical to cosmetics. Glycolipids are a popular group of BS that include rhamnolipids, sophorolipids, mannosylerythritol, trehalose lipids, xylolipids and cellobiose lipids. Lipopeptides e.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Biochemistry and Nutrition Division, ICAR- Central Institute of Fisheries Technology, Cochin 682029, Kerala, India. Electronic address:
In the present study, biopolymer (chitosan and alginate)-reinforced rhamnolipid nanoparticles were prepared and represented as 'ALG-RHLP-NPs' and 'CHI-RHLP-NPs'. The sizes of the nanoparticles ranged from 150 to 300 nm. The encapsulation efficiencies of ALG-RHLP-NPs and CHI-RHLP-NPs were found to be 81.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!