Optically active phenylethene dimers based on a planar chiral 4,7,12,15-tetrasubstituted [2.2]paracyclophane were synthesized. We succeeded in controlling the molecular motion by binding luminophores in close proximity with the [2.2]paracyclophane scaffold. For example, aggregation-induced emission (AIE)-active luminophores were converted to show intense photoluminescence (PL) even in a diluted solution at room temperature and the resulting compound worked as a single-molecule thermoresponsible material around room temperature. Because of the AIE-active unit, the molecular motion could be easily activated by heating, leading to variable and reversible PL intensity. Furthermore, the π-conjugated systems with the planar chirality of 4,7,12,15-tetrasubstituted [2.2]paracyclophane provided excellent characteristics on circular dichroism (CD) and circularly polarized luminescence (CPL). The obtained dimers showed high CPL performances both in a diluted solution and in an aggregation state. We succeeded in proving that simple molecular designs composed of only carbon and hydrogen atoms could create versatile optical functionalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201605598 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!