Vacancies play a pivotal role in affecting ferroelectric polarization and switching properties, and there is a possibility that ferroelectricity may be utterly eliminated when defects render the system metallic. However, sufficient quantitative understandings of the subject have been lacking for decades due to the fact that vacancies in ferroelectrics are often charged and polarization in charged systems is not translationally invariant. Here we perform first-principles studies to investigate the influence of vacancies on ferroelectric polarization and polarization switching in prototypical BaTiO of tetragonal symmetry. We demonstrate using the modern theory of polarization that, in contrast to common wisdom, defective BaTiO with a large concentration of vacancies (or , or ) possesses a strong nonzero electric polarization. Breaking of Ti-O bonds is found to have little effect on the magnitude of polarization, which is striking. Furthermore, a previously unrecognized microscopic mechanism, which is particularly important when vacancies are present, is proposed for polarization switching. The mechanism immediately reveals that (i) the switching barrier in the presence of is small with ΔE = 8.3 meV per bulk formula cell, and the polarization is thus switchable even when vacancies exist; (ii) The local environment of vacancy is surprisingly insignificant in polarization switching. These results provide profound new knowledge and will stimulate more theoretical and experimental interest on defect physics in FEs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264607 | PMC |
http://dx.doi.org/10.1038/srep41301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!