Introduction: Peripheral nerve injuries (PNI) are among the leading causes of physical disability in the United States. The majority of injuries occur in the upper extremities, and functional recovery is often limited. Robust animal models are critical first steps for developing effective therapies to restore function after PNI.
Methods: We developed an automated behavioral assay that provides quantitative measurements of volitional forelimb strength in rats. Multiple forelimb PNI models involving the median and ulnar nerves were used to assess forelimb function for up to 13 weeks postinjury.
Results: Despite multiple weeks of task-oriented training following injury, rats exhibit significant reductions in multiple quantitative parameters of forelimb function, including maximal pull force and speed of force generation.
Discussion: This study demonstrates that the isometric pull task is an effective method of evaluating forelimb function following PNI and may aid in development of therapeutic interventions to restore function. Muscle Nerve 56: 1149-1154, 2017.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589485 | PMC |
http://dx.doi.org/10.1002/mus.25590 | DOI Listing |
PLoS One
January 2025
Department of Physiology, Biophysics, and Neurosciences; Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
The mechanisms underlying the establishment of asymmetric structures during development remain elusive. The wing of Drosophila is asymmetric along the Anterior-Posterior (AP) axis, but the developmental origins of this asymmetry is unknown. Here, we investigate the contribution of cell recruitment, a process that drives cell fate differentiation in the Drosophila wing disc, to the asymmetric shape and pattern of the adult wing.
View Article and Find Full Text PDFBMC Genomics
December 2024
Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China.
Background: Nuptial pads, a typical sexually dimorphic trait in anurans, are located on the first digit of the male forelimb in Rana chensinensis and exhibit morphological changes synchronized with breeding cycles. However, the genetic mechanisms underlying its formation and seasonal changes remain poorly understood.
Results: To identify genes and biological processes associated with the development and seasonal variations of nuptial pads, we conducted a comprehensive transcriptome analysis on nuptial pads and hind toe skin across both sexes at different breeding periods in R.
Pol J Vet Sci
June 2024
Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Łukasiewicza 5/7, 50-367 Wroclaw, Poland.
The aim of this study was to evaluate the efficacy of thermography in assessing the impact of regular physical effort on changes in the body surface temperature of the upper body parts of young racehorses. The study involved monitoring 33 racehorses aged 3 years in 3 imaging sessions over a period of 3 months. Temperature measurements of the neck and upper part of the forelimbs and hindlimbs from both sides were taken just before and after training.
View Article and Find Full Text PDFDev Growth Differ
December 2024
Graduate School of Medical Sciences, Tottori University Yonago, Tottori, Japan.
5'Hox genes regulate pattern formation along the axes of the limb. Previously, we showed that Hoxa13/Hoxd13 double-mutant newts lacked all digits of the forelimbs during development and regeneration, showing that newt Hox13 is necessary for digit formation in development and regeneration. In addition, we found another unique phenotype.
View Article and Find Full Text PDFCell Rep
December 2024
Centre for Neuroscience, Indian Institute of Science, Bengaluru, Karnataka 560012, India. Electronic address:
Skilled forelimb control is essential for daily living, yet our understanding of its neural mechanisms, although extensive, remains incomplete. Here, we present evidence that the superior colliculus (SC), a major midbrain structure, is necessary for accurate forelimb reaching in mice. We found that neurons in the lateral SC are active during goal-directed reaching, and by employing chemogenetic and phase-specific optogenetic silencing of these neurons, we show that the SC causally facilitates reach accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!