In recent years more and more data have emerged linking the most radical resection to prolonged survival in patients harboring brain tumors. Since total tumor resection could increase postoperative morbidity, many methods have been suggested to reduce the risk of postoperative neurological deficits: awake craniotomy with the possibility of continuous patient-surgeon communication is one of the possibilities of finding out how radical a tumor resection can possibly be without causing permanent harm to the patient.In 1994 we started to perform awake craniotomy for glioma resection. In 2005 the use of intraoperative high-field magnetic resonance imaging (MRI) was included in the standard tumor therapy protocol. Here we review our experience in performing awake surgery for gliomas, gained in 219 patients.Patient selection by the operating surgeon and a neuropsychologist is of primary importance: the patient should feel as if they are part of the surgical team fighting against the tumor. The patient will undergo extensive neuropsychological testing, functional MRI, and fiber tractography in order to define the relationship between the tumor and the functionally relevant brain areas. Attention needs to be given at which particular time during surgery the intraoperative MRI is performed. Results from part of our series (without and with ioMRI scan) are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-319-39546-3_45 | DOI Listing |
J Neurosurg
January 2025
1Department of Neurosurgery and.
Objective: Awake craniotomy is commonly used to resect lesions located near the language area during brain surgery. However, it is often difficult to perform language tasks due to several limitations such as difficulty in awakening during surgery and intraoperative seizures. This study investigated the clinical significance of bidirectional corticocortical evoked potential (CCEP) monitoring as a new approach to evaluate intraoperative language function.
View Article and Find Full Text PDFCurr Oncol
January 2025
Neurosurgery Departament at ISSSTE 1ero De Octubre, Mexico City 07760, Mexico.
Introduction: Temporo-insular gliomas, rare brain tumors originating from glial cells, comprise about 30% of brain tumors and vary in aggressiveness from grade I to IV. Despite advancements in neuroimaging and surgical techniques, their management remains complex due to their location near critical cognitive areas. Techniques like awake craniotomy have improved outcomes, but tumor heterogeneity and proximity to vital structures pose challenges.
View Article and Find Full Text PDFCureus
December 2024
Department of Neurosurgery, Universidade Federal Fluminense, Niterói, BRA.
Awake craniotomy (AC) is a critical neurosurgical technique for maximizing tumor resection in eloquent brain regions while preserving essential neurological functions like speech and motor control. Despite its widespread adoption, no prior bibliometric analysis has evaluated the most influential research in this field. This study analyzed the top 100 most-cited articles on AC to identify key trends, influential works, and authorship demographics.
View Article and Find Full Text PDFNeurosurg Focus Video
January 2025
Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and.
Intraoperative neuropsychological testing (IONT) is a sophisticated method of cognitive mapping during the resection of brain tumors in eloquent areas. Direct electrical stimulation during awake craniotomy is routinely utilized for mapping basic language and sensorimotor function, but the utilization of IONT offers an individualized approach that can yield real-time, comprehensive feedback on various cognitive functions, allowing for a tailored and more extensive tumor resection. In this video, the authors present the case of a 41-year-old male undergoing re-resection for a recurrent right temporal astrocytoma in which IONT played a crucial role.
View Article and Find Full Text PDFNeurosurg Focus Video
January 2025
Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia; and.
Electrophysiological mapping and monitoring techniques permit the objective measurement of eloquent cortical regions and accompanying white matter tracts to reduce the incidence of iatrogenic injury in glioma surgery. Recently, there has been increased interest in mapping and monitoring of the human arcuate fasciculus via cortico-cortical evoked potentials (CCEPs) during awake and asleep craniotomy. The authors present the case of a 27-year-old female who underwent a hypnosis-assisted awake craniotomy with cortico-subcortical language mapping and arcuate fasciculus CCEPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!