Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
One of the pivotal mechanisms projected for bioflavonoids in cancer chemoprevention is through their intervention against mutagen-DNA interaction. Recent literatures emphasize the role of troxerutin (TXER) as an emerging anticancer agent. However, there are no reports on its intervention in any carcinogen-DNA interaction. The present study investigates the possibility of TXER, in prevention of 2-aminoanthracene (2-AA) contact with DNA. Steady state and time resolved fluorescence spectroscopy results, highlight the direct contact of 2-AA with DNA, while presence of TXER prevented this interaction. Gel-electrophoresis study clearly revealed that, TXER inhibits 2-AA+UVA radiation induced DNA damage. Fluorescence microscopic studies elucidated that, TXER treatment obstructs the 2-AA interaction with cellular DNA, while molecular docking showed the energetically favourable structure of TXER/2-AA/TXER complex. Further anti-mutagenicity experiment revealed that, TXER prevents the mutation induced colony formation in mutant strain of S. typhymurium. Our in vitro and ex vivo experimental findings provide imperative evidence about the protective role of TXER against environmental carcinogens through the inhibition of carcinogen-DNA interaction, implicating its potential for therapeutic applications in cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2017.01.042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!