This paper describes the preparation of gallium-68 (Ga) isotope labeled porous zirconia (ZrO) nanoparticle (NP) platform of nearly 100nm diameter and its first pharmacokinetic and biodistribution evaluation accomplished with a microPET/CT (μPet/CT) imaging system. Objectives of the investigations were to provide a nanoparticle platform which can be suitable for specific delivery of various therapeutic drugs using surface attached specific molecules as triggering agents, and at the same time, suitable for positron emission tomography (PET) tracing of the prospective drug delivery process. Radiolabeling was accomplished using DOTA bifunctional chelator. DOTA was successfully adsorbed onto the surface of nanoparticles, while the Ga-radiolabeling method proved to be simple and effective. In the course of biodistribution studies, the Ga-labeled DOTA-ZrNPs showed proper radiolabeling stability in their original suspension and in blood serum. μPet/CT imaging studies confirmed a RES-biodistribution profile indicating stable nano-sized labeled particles in vivo. Results proved that the new method offers the opportunity to examine further specifically targeted and drug payload carrier variants of zirconia NP systems using PET/CT imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2017.01.028DOI Listing

Publication Analysis

Top Keywords

nanoparticle platform
12
porous zirconia
8
drug delivery
8
μpet/ct imaging
8
preparation ga-radiolabeling
4
ga-radiolabeling porous
4
zirconia nanoparticle
4
platform pet/ct-imaging
4
pet/ct-imaging guided
4
guided drug
4

Similar Publications

Folic acid-targeted β-lactoglobulin nanocarriers for enhanced delivery of 5-fluorouracil and sodium butyrate in colorectal cancer treatment.

Int J Pharm

January 2025

Department of Physics, Kharazmi University, Tehran, Iran; Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Colorectal cancer (CRC) remains a significant public health concern, emphasizing the need for innovative therapeutic strategies to improve patient outcomes. This study aimed to develop a highly efficient nanocarrier for targeted drug delivery, enhancing drug efficacy while minimizing concentrations and limiting adverse effects. We synthesized protein-based β-lactoglobulin (βlg) nanoparticles (NPs), loaded with 5-fluorouracil (5-FU) and sodium butyrate (NaB), and further functionalized with folic acid (FA) for specific targeting of folate receptor-positive CRC cells.

View Article and Find Full Text PDF

Enhanced Nasal-to-Brain Drug Delivery by Multivalent Bioadhesive Nanoparticle Clusters for Cerebral Ischemic Reperfusion Injury Protection.

Acta Biomater

January 2025

School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China. Electronic address:

Following cerebral ischemia, reperfusion injury can worsen ischemia-induced functional, metabolic disturbances, and pathological damage upon blood flow restoration, potentially leading to irreversible harm. Yet, there's a dearth of advanced, localized drug delivery systems ensuring active pharmaceutical ingredient (API) efficacy in cerebral protection during ischemia-reperfusion. This study introduces a multivalent bioadhesive nanoparticle-cluster, merging bioadhesive nanoparticles (BNPs) with dendritic polyamidoamine (PAMAM), enhancing nose-to-brain delivery and brain protection efficacy against cerebral ischemia-reperfusion injuries (CIRI).

View Article and Find Full Text PDF

Targeted organelle therapy is a promising therapeutic method for significantly regulating the tumor microenvironment, yet it often lacks effective strategies for leveraging synergistic enhancement effect. Engineered small extracellular vesicles (sEVs) are expected to address this challenge due to their notable advantages in drug delivery, extended circulation time, and intercellular information transmission. Herein, we prepare sEVs with pH and photothermal dual-responsiveness, which are encapsulated with hydrogels for a quadruple-efficient synergistic therapy.

View Article and Find Full Text PDF

Background-free luminescent and chromatic assay for strong visual detection of creatinine.

Talanta

January 2025

Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. Electronic address:

Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine.

View Article and Find Full Text PDF

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!