Chlormadinone acetate (CMA) is a frequently used progestin with antiandrogenic activity in humans. Residues may enter the aquatic environment but potential adverse effects in fish are unknown. While our previous work focused on effects of CMA in vitro and in zebrafish eleuthero-embryos, the present study reports on reproductive and transcriptional effects in adult female and male zebrafish (Danio rerio). We performed a reproductive study using breeding groups of zebrafish. After 15 days of pre-exposure, we exposed zebrafish to different measured concentrations between 6.4 and 53,745 ng/L CMA for 21 days and counted produced eggs daily to determine fecundity. Additionally, transcriptional effects of CMA in brains, livers, and gonads were analyzed. CMA induced a slight but statistically significant reduction in fecundity at 65 ng/L and 53,745 ng/L compared to pre-exposure. Furthermore, we observed differential expression for gene transcripts of steroid hormone receptors, genes related to the hypothalamic-pituitary-gonadal axis, and steroidogenesis. In particular, we found a significant decrease of transcript levels of vitellogenin (vtg1) in ovaries and liver, and of cyp2k7 in the liver of males, as well as a significant increase of transcripts of the progesterone receptor (pgr) in testes, and cyp2k1 in the liver of females. The observed effects were weaker than those of other very potent progestins, which is probably related to the lack of interaction of CMA with the zebrafish progesterone receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2017.01.031 | DOI Listing |
J Inflamm Res
January 2025
Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China.
Ovarian cancer (OC) remains one of the most lethal gynecological malignancies, largely due to its late-stage diagnosis and high recurrence rates. Chronic inflammation is a critical driver of OC progression, contributing to immune evasion, tumor growth, and metastasis. Inflammatory cytokines, including IL-6, TNF-α, and IL-8, as well as key signaling pathways such as nuclear factor kappa B (NF-kB) and signal transducer and activator of transcription 3 (STAT3), are upregulated in OC, promoting a tumor-promoting environment.
View Article and Find Full Text PDFFront Immunol
January 2025
Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Introduction: Ulcerative colitis (UC) is a chronic inflammatory disease. Patients with UC typically exhibit disruption of the Treg/Th17 immune axis, but its exact mechanism is still unclear.
Methods: This study first analyzed RNA- seq data from public databases of humans and mice, and cytology experiments were conducted to induce or inhibit the expression of SIRT1.
World Allergy Organ J
January 2025
Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Background: While epidemiological data suggest a connection between atopic dermatitis (AD) and COVID-19, the molecular mechanisms underlying this relationship remain unclear.
Objective: To investigate whether COVID-19-related CpGs may contribute to AD development and whether this association is mediated through the regulation of specific genes' expression.
Methods: We combined Mendelian randomization and transcriptome analysis for data-driven explorations.
Cytotechnology
April 2025
Child Rehabilitation Department, Hubei NO.3 People's Hospital of Jianghan University, No. 26 Zhongshan Avenue, Qiaokou District, Wuhan, 430033 China.
Unlabelled: Inflammatory bowel disease (IBD) is a chronic, progressive, immune-mediated, gastrointestinal inflammatory disease with increasing occurrences in children. Collagen triple helix repeat containing 1 (CTHRC1), a migration-promoting protein, acts as a tumor-promoting factor in malignant tumors. However, functions and mechanisms of CTHRC1 in children with IBD remain unclear.
View Article and Find Full Text PDFBackground: The development and approval of novel drugs are typically time-intensive and expensive. Leveraging a computational drug repurposing framework that integrates disease-relevant genetically regulated gene expression (GReX) and large longitudinal electronic medical record (EMR) databases can expedite the repositioning of existing medications. However, validating computational predictions of the drug repurposing framework remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!