Design of potent fluoro-substituted chalcones as antimicrobial agents.

J Enzyme Inhib Med Chem

f Department of Medical Microbiology, Faculty of Medicine , Mersin University, Mersin , Turkey.

Published: December 2017

Owing to ever-increasing bacterial and fungal drug resistance, we attempted to develop novel antitubercular and antimicrobial agents. For this purpose, we developed some new fluorine-substituted chalcone analogs (3, 4, 9-15, and 20-23) using a structure-activity relationship approach. Target compounds were evaluated for their antitubercular efficacy against Mycobacterium tuberculosis H37Rv and antimicrobial activity against five common pathogenic bacterial and three common fungal strains. Three derivatives (3, 9, and 10) displayed significant antitubercular activity with IC values of ≤16,760. Compounds derived from trimethoxy substituent scaffolds with monofluoro substitution on the B ring of the chalcone structure exhibited superior inhibition activity compared to corresponding hydroxy analogs. In terms of antimicrobial activity, most compounds (3, 9, 12-14, and 23) exhibited moderate to potent activity against the bacteria, and the antifungal activities of compounds 3, 13, 15, 20, and 22 were comparable to those of reference drugs ampicillin and fluconazole.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010113PMC
http://dx.doi.org/10.1080/14756366.2016.1265517DOI Listing

Publication Analysis

Top Keywords

antimicrobial agents
8
antimicrobial activity
8
activity
5
design potent
4
potent fluoro-substituted
4
fluoro-substituted chalcones
4
antimicrobial
4
chalcones antimicrobial
4
agents ever-increasing
4
ever-increasing bacterial
4

Similar Publications

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.

View Article and Find Full Text PDF

Enhancing antibody levels and T cell activity of quadrivalent influenza vaccine by combining it with CpG HP021.

Sci Rep

December 2024

State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.

Influenza virus infections are a serious danger to people's health worldwide as they are responsible for seasonal flu outbreaks. There is an urgent need to improve the effectiveness and durability longevity of the immune response to influenza vaccines. We synthesized the CpG HP021 and examined the impact of it on the immune response to an influenza vaccine.

View Article and Find Full Text PDF

Limited knowledge exists regarding biomarkers that predict treatment response in Lupus nephritis (LN). We aimed to identify potential molecular biomarkers to predict treatment response in patients with LN. We enrolled 66 patients with active LN who underwent renal biopsy upon enrollment.

View Article and Find Full Text PDF

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!