Degradation of polysaccharides forms an essential arc in the carbon cycle, provides a percentage of our daily caloric intake, and is a major driver in the renewable chemical industry. Microorganisms proficient at degrading insoluble polysaccharides possess large numbers of carbohydrate active enzymes (CAZymes), many of which have been categorized as functionally redundant. Here we present data that suggests that CAZymes that have overlapping enzymatic activities can have unique, non-overlapping biological functions in the cell. Our comprehensive study to understand cellodextrin utilization in the soil saprophyte Cellvibrio japonicus found that only one of four predicted β-glucosidases is required in a physiological context. Gene deletion analysis indicated that only the cel3B gene product is essential for efficient cellodextrin utilization in C. japonicus and is constitutively expressed at high levels. Interestingly, expression of individual β-glucosidases in Escherichia coli K-12 enabled this non-cellulolytic bacterium to be fully capable of using cellobiose as a sole carbon source. Furthermore, enzyme kinetic studies indicated that the Cel3A enzyme is significantly more active than the Cel3B enzyme on the oligosaccharides but not disaccharides. Our approach for parsing related CAZymes to determine actual physiological roles in the cell can be applied to other polysaccharide-degradation systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398764PMC
http://dx.doi.org/10.1111/mmi.13625DOI Listing

Publication Analysis

Top Keywords

cellvibrio japonicus
8
cellodextrin utilization
8
systems analysis
4
analysis cellvibrio
4
japonicus resolves
4
resolves predicted
4
predicted redundancy
4
redundancy β-glucosidases
4
β-glucosidases determines
4
determines essential
4

Similar Publications

Bacteria are major drivers of organic matter decomposition and play crucial roles in global nutrient cycling. Although the degradation of dead fungal biomass (necromass) is increasingly recognized as an important contributor to soil carbon (C) and nitrogen (N) cycling, the genes and metabolic pathways involved in necromass degradation are less characterized. In particular, how bacteria degrade necromass containing different quantities of melanin, which largely control rates of necromass decomposition , is largely unknown.

View Article and Find Full Text PDF

is a saprophytic bacterium proficient at environmental polysaccharide degradation for carbon and energy acquisition. Genetic, enzymatic, and structural characterization of carbohydrate active enzymes, specifically those that degrade plant and animal-derived polysaccharides, demonstrated that this bacterium is a carbohydrate-bioconversion specialist. Structural analyses of these enzymes identified highly specialized carbohydrate binding modules that facilitate activity.

View Article and Find Full Text PDF

Bacteria and yeasts grow on biomass polysaccharides by expressing and excreting a complex array of glycoside hydrolase (GH) enzymes. Identification and annotation of such GH pools, which are valuable commodities for sustainable energy and chemistries, by conventional means (genomics, proteomics) are complicated, as primary sequence or secondary structure alignment with known active enzymes is not always predictive for new ones. Here we report a "low-tech", easy-to-use, and sensitive multiplexing activity-based protein-profiling platform to characterize the xyloglucan-degrading GH system excreted by the soil saprophyte, , when grown on xyloglucan.

View Article and Find Full Text PDF

Cyclodextrinases are carbohydrate-active enzymes involved in the linearization of circular amylose oligosaccharides. Primarily thought to function as part of starch metabolism, there have been previous reports of bacterial cyclodextrinases also having additional enzymatic activities on linear malto-oligosaccharides. This substrate class also includes environmentally rare α-diglucosides such as kojibiose (α-1,2), nigerose (α-1,3), and isomaltose (α-1,6), all of which have valuable properties as prebiotics or low-glycemic index sweeteners.

View Article and Find Full Text PDF

Understanding the bacterial metabolism of starch is important as this polysaccharide is a ubiquitous ingredient in foods, supplements, and medicines, all of which influence gut microbiome composition and health. Our RNAseq and growth data set provides a valuable resource to those who want to better understand the regulation of starch utilization in Gram-negative bacteria. These data are also useful as they provide an example of how to approach studying a starch-utilizing bacterium that has many putative amylases by coupling transcriptomic data with growth assays to overcome the potential challenges of functional redundancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!