We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that and genes were significant over diabetes studies, while and genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295038PMC
http://dx.doi.org/10.3390/genes8010044DOI Listing

Publication Analysis

Top Keywords

gene sets
28
expression association
20
tissue non-specific
16
non-specific genes
16
genes pathways
12
gene expression
12
genes gene
12
genes
11
expression
11
gene
11

Similar Publications

Amyotrophic lateral sclerosis (ALS) lacks a specific biomarker, but is defined by relatively selective toxicity to motor neurons (MN). As others have highlighted, this offers an opportunity to develop a sensitive and specific biomarker based on detection of DNA released from dying MN within accessible biofluids. Here we have performed whole genome bisulfite sequencing (WGBS) of iPSC-derived MN from neurologically normal individuals.

View Article and Find Full Text PDF

Genome-scale metabolic models (GSMM) are commonly used to identify gene deletion sets that result in growth coupling and pairing product formation with substrate utilization and can improve strain performance beyond levels typically accessible using traditional strain engineering approaches. However, sustainable feedstocks pose a challenge due to incomplete high-resolution metabolic data for non-canonical carbon sources required to curate GSMM and identify implementable designs. Here we address a four-gene deletion design in the Pseudomonas putida KT2440 strain for the lignin-derived non-sugar carbon source, p-coumarate (p-CA), that proved challenging to implement.

View Article and Find Full Text PDF

Identifying cancer prognosis genes through causal learning.

Brief Bioinform

November 2024

School of Artificial Intelligence, Jilin University, 3003 Qianjin Street, 130012 Changchun, China.

Accurate identification of causal genes for cancer prognosis is critical for estimating disease progression and guiding treatment interventions. In this study, we propose CPCG (Cancer Prognosis's Causal Gene), a two-stage framework identifying gene sets causally associated with patient prognosis across diverse cancer types using transcriptomic data. Initially, an ensemble approach models gene expression's impact on survival with parametric and semiparametric hazard models.

View Article and Find Full Text PDF

The experimental methods employed during metagenomic sequencing analyses of microbiome samples significantly impact the resulting data and typically vary substantially between laboratories. In this study, a full factorial experimental design was used to compare the effects of a select set of methodological choices (sample, operator, lot, extraction kit, variable region, and reference database) on the analysis of biologically diverse stool samples. For each parameter investigated, a main effect was calculated that allowed direct comparison both between methodological choices (bias effects) and between samples (real biological differences).

View Article and Find Full Text PDF

Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!