The development of digital holography is anticipated for the viewing of 3D images by reconstructing both the amplitude and phase information of the object. Compared to analog holograms written by a laser interference, digital hologram technology has the potential to realize a moving 3D image using a spatial light modulator. However, to ensure a high-resolution 3D image with a large viewing angle, the hologram panel requires a near-wavelength scale pixel pitch with a sufficient large numbers of pixels. In this manuscript, we demonstrate a digital hologram panel based on a chalcogenide phase-change material (PCM) which has a pixel pitch of 1 μm and a panel size of 1.6 × 1.6 cm. A thin film of PCM encapsulated by dielectric layers can be used for the hologram panel by means of excimer laser lithography. By tuning the thicknesses of upper and lower dielectric layers, a color-selective diffraction panel is demonstrated since a thin film resonance caused by dielectric can affect to the absorption and diffraction spectrum of the proposed hologram panel. We also show reflection color of a small active region (1 μm × 4 μm) made by ultra-thin PCM layer can be electrically changed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259724 | PMC |
http://dx.doi.org/10.1038/srep41152 | DOI Listing |
We analyze an image quality of a holographic lens (HL) in order to implement compact near-eye displays using a flat-panel-type micro-display panel. The proposed method utilizes a non-converging signal wave in a fabrication process of the HL, so that it provides affordable eye-box size with minimizing the aberration due to rays in the off-Bragg condition. For analyzing and optimizing the HL based on the non-converging signal wave, we introduce a comprehensive analysis model for an assessment of the image quality in the HL.
View Article and Find Full Text PDFWe propose the multi-directional viewing-zone extension of computer-generated holograms (CGHs) using a single flat-panel spatial light modulator (SLM) and a multi-directional shuffle interconnection. A design breaking the SLM plane into several sub-zone regions and creating extended viewing-zones through a multi-directional shuffle interconnection is presented with a proof-of-concept experiment generating a cone-like viewing zone subtended by sixteen sub-viewing-zones.
View Article and Find Full Text PDFA holographic automotive head-up display was developed to project 2D and 3D ultra-high definition (UHD) images using LiDAR data in the driver's field of view. The LiDAR data was collected with a 3D terrestrial laser scanner and was converted to computer-generated holograms (CGHs). The reconstructions were obtained with a HeNe laser and a UHD spatial light modulator with a panel resolution of 3840×2160 px for replay field projections.
View Article and Find Full Text PDFIn a digital hologram, the maximum viewing angle of a computer-generated hologram (CGH) is limited by pixel pitch due to the diffraction grating equation. Since reducing pixel size of display panel is challenging and costly, we propose a method to expand the viewing angle of a digital hologram by attaching an aligned pixelated random phase mask (PRPM) onto the CGH pattern based on analysis of simulation results. By introducing a phase-averaging process to the widely used iterative Fourier transform algorithm, an optimized CGH pattern can be obtained in conjunction with a PRPM.
View Article and Find Full Text PDFNat Commun
November 2020
Samsung Advanced Institute of Technology, Samsung Electronics, Suwon, Gyeonggi-do, South Korea.
Since its discovery almost 70 years ago, the hologram has been considered to reproduce the most realistic three dimensional images without visual side effects. Holographic video has been extensively researched for commercialization, since Benton et al. at MIT Media Lab developed the first holographic video systems in 1990.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!