Corneal endothelium (CE) is among the most metabolically active tissues in the body. This elevated metabolic rate helps the CE maintain corneal transparency by its ion and fluid transport properties, which when disrupted, leads to visual impairment. Here we demonstrate that glutamine catabolism (glutaminolysis) through TCA cycle generates a large fraction of the ATP needed to maintain CE function, and this glutaminolysis is severely disrupted in cells deficient in NH:H cotransporter Solute Carrier Family 4 Member 11 (SLC4A11). Considering SLC4A11 mutations leads to corneal endothelial dystrophy and sensorineural deafness, our results indicate that SLC4A11-associated developmental and degenerative disorders result from altered glutamine catabolism. Overall, our results describe an important metabolic mechanism that provides CE cells with the energy required to maintain high level transport activity, reveal a direct link between glutamine metabolism and developmental and degenerative neuronal diseases, and suggest an approach for protecting the CE during ophthalmic surgeries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5474426PMC
http://dx.doi.org/10.1016/j.ebiom.2017.01.004DOI Listing

Publication Analysis

Top Keywords

corneal endothelium
8
glutamine catabolism
8
developmental degenerative
8
glutaminolysis essential
4
essential energy
4
energy production
4
production ion
4
ion transport
4
transport human
4
corneal
4

Similar Publications

Expression of Yes-associated protein in endothelial cells of human corneas before and after storage in organ culture.

Sci Rep

December 2024

Laboratory of Biology, Engineering, and Imaging for Ophthalmology, BiiO, Faculty of Medicine, University of Jean Monnet, 10 rue de la Marandière, 42270, Saint-Priest en Jarez, France.

The cornea, the anterior meniscus-shaped transparent and refractive structure of the eyeball, is the first mechanical barrier of the eye. Its functionality heavily relies on the health of its endothelium, its most posterior layer. The treatment of corneal endothelial cells (CECs) deficiency is allogeneic corneal graft using stored donor corneas.

View Article and Find Full Text PDF

SIRT1 Activation Suppresses Corneal Endothelial-Mesenchymal Transition via the TGF-β/Smad2/3 Pathway.

Curr Issues Mol Biol

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.

Endothelial-mesenchymal transition (EnMT) is the transversion of endothelial cells to mesenchymal cells under certain physiological or pathological conditions. When EnMT occurs in the corneal endothelium, corneal endothelial cells (CECs) lose their normal function and thus cannot maintain corneal clarity. Studies have shown that the mechanism of EnMT in CECs involves the transforming growth factor-β (TGF-β) signaling pathway, and one of the important inhibitors of the TGF-β/Smad2/3 pathway is sirtuin-1 (SIRT1).

View Article and Find Full Text PDF

Predicting corneal decompensation in Fuchs endothelial corneal dystrophy with Scheimpflug tomography and clinical parameters.

Indian J Ophthalmol

January 2025

Department of Ophthalmology, Université Paris Cité, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.

Purpose: This study aims to evaluate the efficacy of various tomographic indices, both established and novel, in predicting endothelial decompensation leading to either spontaneous corneal transplantation or transplantation following cataract surgery in patients with Fuchs endothelial corneal dystrophy (FECD).

Methods: In this cross-sectional, retrospective study, we reviewed the files of 93 eyes from 54 FECD patients undergoing regular follow-up. We recorded clinical metrics such as morning visual disturbance (MVD) and corrected distance visual acuity.

View Article and Find Full Text PDF

The scope of eye banking activities has been expanding with the advances and techniques of keratoplasty. With the popularity of descemet membrane endothelial keratoplasty (DMEK) in the recent decade, there is a need to adopt the preparation of DMEK tissues in the eye banks. This necessitated surgical training of the eye bank technicians, development of infrastructure in the eye bank, innovative methods of graft preparation, and delivery for the surgery at distant surgery centers.

View Article and Find Full Text PDF

A male patient in his 20s, suffering from a persistent, infection-related corneal endothelial plaque (EP) was urgently referred to our tertiary medical centre for therapeutic penetrating keratoplasty (TPK). Over the preceding month, he had been undergoing treatment with both topical and oral antifungal medications due to clinical suspicion of fungal keratitis. At our centre, an endothelial scraping was performed using a reverse Sinskey hook to obtain samples for microbiology and revealed septate branching fungal hyphae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!