Enrichment of a mixed microbial culture for polyhydroxyalkanoates production: Effect of pH and N and P concentrations.

Sci Total Environ

GENOCOV Research Group, Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Edifici Q, c/ de les Sitges S/N, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain. Electronic address:

Published: April 2017

Polyhydroxyalkanoates (PHA) are biopolymers that can be an alternative against conventional plastics. The study reported herein evaluated the enrichment of a mixed microbial culture (MMC) operated under feast/famine regime and different pHs in a sequencing batch reactor (SBR) using acetate as sole carbon source to produce polyhydroxyalkanoates (PHAs). The enrichment step was evaluated at controlled pH of 7.5 and also without pH control (averaged value of 9.0). The acetate uptake rate (-q) of both enrichments at the end of the experimental period exhibited similar behaviour being about 0.18CmolAcCmolXh and 0.19CmolAcCmolXh for SBR-A and SBR-B, respectively. However, the PHA-storing capacity of the biomass enriched without pH control was better, exhibiting a maximum PHA content of 36% (gPHAg VSS) with a PHA production rate (q) of 0.16CmolPHACmolXh. Batch experiments were performed to evaluate PHA-storing capacity of the enriched culture at different pHs and nutrients concentrations. In the pH experiments (without nutrient limitation), it was found that in the absence of controlled pH, the enriched biomass exhibited a PHA content of 44% gPHAg VSS with -q and PHA to substrate yield (Y) of 0.57CmolAcCmolXh and 0.33CmolPHACmolAc, respectively. Regarding the experiments at variable nutrients concentration (pH ranging 8.8 to 9.2), the results indicate that the PHA content in the enriched biomass is significantly higher being around 51% gPHAg VSS under nitrogen limitation. This work demonstrated the feasibility of the enrichment of a MMC with PHA storage ability without pH control. Results also suggest that better PHAs contents and substrate uptake rates are obtained without controlling the pH in the accumulation step. Finally, this work also highlights the importance of understanding the role of nutrients concentration during the accumulation step.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.01.069DOI Listing

Publication Analysis

Top Keywords

pha content
12
gphag vss
12
enrichment mixed
8
mixed microbial
8
microbial culture
8
pha-storing capacity
8
control better
8
vss pha
8
enriched biomass
8
nutrients concentration
8

Similar Publications

is a fully mycoheterotrophic orchid that lacks both leaves and roots, belonging to the genus in the subtribe Calypsoinae. In this study, we assembled and annotated its mitochondrial genome (397,867 bp, GC content: 42.70%), identifying 55 genes, including 37 protein-coding genes (PCGs), 16 tRNAs, and 2 rRNAs, and conducted analyses of relative synonymous codon usage (RSCU), repeat sequences, horizontal gene transfers (HGTs), and gene selective pressure (dN/dS).

View Article and Find Full Text PDF

Background: The phase angle (PhA) in bioelectrical impedance analysis (BIA) reflects the cell membrane integrity or body fluid equilibrium. We examined how the PhA aligns with previously known markers of acute heart failure (HF) and assessed its value as a screening tool.

Methods: PhA was measured in 50 patients with HF and 20 non-HF controls along with the edema index (EI), another BIA parameter suggestive of edema.

View Article and Find Full Text PDF

Biodegradable microplastics affect tomato (Solanum lycopersicum L.) growth by interfering rhizosphere key phylotypes.

J Hazard Mater

January 2025

Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:

Biodegradable microplastics (BMPs), which form as biodegradable plastics degrade in agricultural settings, may influence plant growth and soil health. This study investigates the effects of BMPs on tomato growth and the microbial mechanisms involved. A greenhouse experiment applied BMPs-polyhydroxyalkanoate (PHA), polylactic acid (PLA), poly(butylene succinate-co-butylene adipate) (PBSA), and poly(butylene-adipate-co-terephthalate) (PBAT)-to tomato plants.

View Article and Find Full Text PDF

Advances in polyhydroxyalkanoate (PHA) production from renewable waste materials using halophilic microorganisms: A comprehensive review.

Sci Total Environ

January 2025

Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar. Electronic address:

Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers that can replace conventional plastics in different sectors. However, PHA commercialization is hampered due to their high production cost resulting from the use of high purity substrates, their low conversion into PHAs by using conventional microbial chassis and the high downstream processing cost. Taking these challenges into account, researchers are focusing on the use of waste by-products as alternative low-cost feedstocks for fast-growing and contamination-resistant halophilic microorganisms (Bacteria, Archaea…).

View Article and Find Full Text PDF

One-Pot lignin bioconversion to polyhydroxyalkanoates based on hierarchical utilization of heterogeneous compounds.

Bioresour Technol

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, S117585, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), S138602, Singapore. Electronic address:

Pseudomonas putida degraded 35 % of compounds in alkali-pretreated lignin liquor under nitrogen-replete conditions but with low polyhydroxyalkanoates (PHA) production, while limiting nitrogen supplement improved PHA content (PHA/dry cell weight) to 43 % at the expense of decreased lignin degradation of 22 %. Increase of initial cell biomass (0.1-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!