Epigallocatechin-3-gallate modulates arrhythmogenic activity and calcium homeostasis of left atrium.

Int J Cardiol

Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan; Department of Medical, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan. Electronic address:

Published: June 2017

Background: Atrial fibrillation (AF) is the commonest sustained arrhythmia, and increases the risk of stroke, heart failure, and mortality. Calcium (Ca) overload and oxidative stress are thought to participate in the pathogenesis of AF. Epigallocatechin-3-gallate (EGCG) has an antioxidative effect and been shown to be beneficial in promoting cardiovascular health. However, it is not clear if EGCG directly modulates the electrophysiological characteristics and Ca homeostasis of the left atrium (LA).

Methods And Results: Conventional microelectrodes, whole-cell patch-clamp, and Fluo-3 fluorometric ratio technique were performed using the isolated rabbit LA preparations or isolated single LA cardiomyocytes before and after EGCG treatment. EGCG (0.01, 0.1, 1, and 10μM) which concentration-dependently decreased the APD by 13±8%, 25±5%, 31±6%, and 37±5%, APD by 9±8%, 22±6%, 32±7%, and 40±4%, and APD by 2±12%, 9±8%, 24±10%, and 34±5% in LA preparations. EGCG (0.1μM) decreased the late sodium (Na) current, L-type Ca current, nickel-sensitive Na-Ca exchanger current, and transient outward current, but did not change the Na current and ultra-rapid delayed rectifier potassium current in LA cardiomyocytes. EGCG decreased intracellular Ca transient and sarcoplasmic reticulum Ca content in LA cardiomyocytes. Furthermore, EGCG decreased isoproterenol (ISO, 1μM)-induced burst firing. KT5823 (1μM) or KN93 (1μM) decreased the incidences of ISO-induced LA burst firing, which became lower with EGCG treatment. H89 (10μM) and KN92 (1μM) did not suppress the incidence of ISO-induced LA burst firing. However, EGCG decreased the incidences of ISO-induced LA burst firing in the presence of H89 or KN92.

Conclusion: EGCG directly regulates LA electrophysiological characteristics and Ca homeostasis, and suppresses ISO-induced atrial arrhythmogenesis through inhibiting Ca/calmodulin or cGMP-dependent protein kinases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2017.01.090DOI Listing

Publication Analysis

Top Keywords

burst firing
16
cardiomyocytes egcg
12
egcg decreased
12
iso-induced burst
12
egcg
10
homeostasis left
8
left atrium
8
egcg directly
8
electrophysiological characteristics
8
characteristics homeostasis
8

Similar Publications

Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings.

View Article and Find Full Text PDF

Chondroitin Sulfate and Proteinoids in Neuron Models.

ACS Appl Bio Mater

January 2025

Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.

This study examines the relationship between chondroitin sulfate, proteinoids, and computational neuron models, with a specific emphasis on the Izhikevich neuron model. We investigate the effect of chondroitin sulfate-proteinoid complexes on the behavior and dynamics of simulated neurons. Through the use of computational simulations, we provide evidence that these biomolecular components have the power to regulate the responsiveness of neurons, the patterns of their firing, and the ability of their synapses to change within the Izhikevich architecture.

View Article and Find Full Text PDF

Astragaloside Ⅳ (AS-Ⅳ) improved the motor behavior of PD mouse but the alteration of imaging in the PD mice brain was unclear. PD models were established by unilateral injection of ROT into the substantia nigra pars compacta (SNc) of mice. AS-Ⅳ (4 mg/kg) was intraperitoneally injected once a day for 14 days.

View Article and Find Full Text PDF

Personalized Human Astrocyte-Derived Region-Specific Forebrain Organoids Recapitulate Endogenous Pathological Features of Focal Cortical Dysplasia.

Adv Sci (Weinh)

December 2024

Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, 200032, China.

Focal cortical dysplasia (FCD) is a highly heterogeneous neurodevelopmental malformation, the underlying mechanisms of which remain largely elusive. In this study, personalized dorsal and ventral forebrain organoids (DFOs/VFOs) are generated derived from brain astrocytes of patients with FCD type II (FCD II). The pathological features of dysmorphic neurons, balloon cells, and astrogliosis are successfully replicated in patient-derived DFOs, but not in VFOs.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is characterized by dysfunction and loss of upper and lower motor neurons. Several studies have identified structural and functional alterations in the motor neurons before the manifestation of symptoms, yet the underlying cause of such alterations and how they contribute to the progressive degeneration of affected motor neuron networks remain unclear. Importantly, the short and long-term spatiotemporal dynamics of neuronal network activity make it challenging to discern how ALS-related network reconfigurations emerge and evolve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!