Background: Development is an epigenetic regulation dependent event. As one pretranscriptional regulator, bivalent histone modifications were observed to be involved in development recently. It is believed that histone methylation potentially takes charge of cell fate determination and differentiation. The synchronous existence of functionally opposite histone marks at transcript start sequence (TSS) is defined as "Bivalency", which mainly mark development related genes. H3K4me3 and H3K27me3, the prominent histone methylations of bivalency, are implicated in transcriptional activation and transcriptional repression respectively. The delicate balance between H3K4me3 and H3K27me3 produces diverse chromatin architectures, resulting in different transcription states of downstream genes: "poised", "activated" or "repressed".
Objective: In order to explore the developmental role of bivalent histone modification and the underlying mechanism, we did systematic review and rigorous assessment about relative literatures.
Result: Bivalent histone modifications are considered to set up genes for activation during lineage commitment by H3K4me3 and repress lineage control genes to maintain pluripotency by H3K27me3. Summarily, bivalency in stem cells keeps stemness via poising differentiation relevant genes. After receiving developmental signals, the balance between "gene activation" and "gene repression" is broken, which turns genes transcription state from "poised" effect to switch on or switch off effect, thus initiates irreversible and spontaneous differentiation procedures.
Conclusion: Bivalent histone modifications and the associated histone-modifying complexes safeguard proper and robust differentiation of stem cells, thus playing an essential role in development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1574888X12666170123144743 | DOI Listing |
Sci Rep
January 2025
Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
Human exposure to polycyclic aromatic hydrocarbons (PAH) is a significant public health problem that will worsen with a warming climate and increased large-scale wildfires. Here, we characterize an epigenetic memory at the cytochrome P450 1 A (CYP1A) gene in wild Fundulus heteroclitus that have adapted to chronic, extreme PAH pollution. In wild-type fish, CYP1A is highly induced by PAH.
View Article and Find Full Text PDFHere, we report the spatial organization of RNA transcription and associated enhancer dynamics in the human spinal cord at single-cell and single-molecule resolution. We expand traditional multiomic measurements to reveal epigenetically poised and bivalent active transcriptional enhancer states that define cell type specification. Simultaneous detection of chromatin accessibility and histone modifications in spinal cord nuclei reveals previously unobserved cell-type specific cryptic enhancer activity, in which transcriptional activation is uncoupled from chromatin accessibility.
View Article and Find Full Text PDFbioRxiv
January 2025
Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
DNA methylation patterns are inherited from the parental germline to the embryo. In mature sperm, the sites of unmethylated DNA are tightly coupled to sites of histone retention at gene regulatory elements that are implicated in paternal epigenetic inheritance. The timing and mechanism of site-specific DNA demethylation in the male germline currently remains unknown.
View Article and Find Full Text PDFJ Neurosci
January 2025
Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown.
View Article and Find Full Text PDFChromosome Res
January 2025
Saint-Petersburg State University, Saint-Petersburg, Russia.
Danio rerio, commonly known as zebrafish, is an established model organism for the developmental and cell biology studies. Although significant progress has been made in the analysis of the D. rerio genome, cytogenetic studies face challenges due to the unclear identification of chromosomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!