Microtubule mechanics in the working myocyte.

J Physiol

Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.

Published: June 2017

The mechanical role of cardiac microtubules (MTs) has been a topic of some controversy. Early studies, which relied largely on pharmacological interventions that altered the MT cytoskeleton as a whole, presented no consistent role. Recent advances in the ability to observe and manipulate specific properties of the cytoskeleton have strengthened our understanding. Direct observation of MTs in working myocytes suggests a spring-like function, one that is surprisingly tunable by post-translational modification (PTM). Specifically, detyrosination of MTs facilitates an interaction with intermediate filaments that complex with the sarcomere, altering myocyte stiffness, contractility, and mechanosignalling. Such results support a paradigm of cytoskeletal regulation based on not only polymerization, but also associations with binding partners and PTMs that divide the MT cytoskeleton into functionally distinct subsets. The evolutionary costs and benefits of tuning cytoskeletal mechanics remain an open question, one that we discuss herein. Nevertheless, mechanically distinct MT subsets provide a rich new source of therapeutic targets for a variety of phenomena in the heart.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5471505PMC
http://dx.doi.org/10.1113/JP273046DOI Listing

Publication Analysis

Top Keywords

distinct subsets
8
microtubule mechanics
4
mechanics working
4
working myocyte
4
myocyte mechanical
4
mechanical role
4
role cardiac
4
cardiac microtubules
4
microtubules mts
4
mts topic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!