Genetic screens are a common tool to identify new modulators in a defined context, e.g. hormonal response or environmental stress. However, most screens are either in vitro or laborious and time-and-space inefficient. Here we present a novel in planta screening approach that shortens the time from the actual screening process to the identification of a new modulator and simultaneously reduces space requirements and costs. The basic features of this screening approach are the creation of luciferase reporter plants which enable a non-invasive readout in a streamlined multiplate reader process, the transformation of those plants with an inducible, Gateway™-compatible expression vector, and a screening setup, in which whole plants at the seedling stage are screened in 96-multiwell plates in the first transformed generation without the use of an expensive charge-coupled device (CCD) camera system. The screening itself and the verification of candidates can be done in as little as 2-3 weeks. The screen enables the analysis of reporter gene activity upon different treatments. Primary positive plants can immediately be selected and grown further. In this study a fast, simple, cost- and space-efficient in planta screening system to detect novel mediators of a given transcriptional response was developed and successfully tested using the cytokinin signal transduction as a test case.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.12546 | DOI Listing |
Eur Heart J
January 2025
Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, Manuel de Falla, 1, 28222 Majadahonda, Madrid, Spain.
Development of specific therapies addressing the underlying diseases' mechanisms constitutes the basis of precision medicine. Transthyretin cardiac amyloidosis (ATTR-CM) is an exemplar of precise therapeutic approach in the field of heart failure and cardiomyopathies. A better understanding of the underlying pathophysiology, more precise data of its epidemiology, and advances in imaging techniques that allow non-invasive diagnosis have fostered the development of new and very effective specific therapies for ATTR-CM.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada.
Plant roots form associations with both beneficial and pathogenic soil microorganisms. While members of the rhizosphere microbiome can protect against pathogens, the mechanisms are poorly understood. We hypothesized that the ability to form a robust biofilm on the root surface is necessary for the exclusion of pathogens; however, it is not known if the same biofilm formation components required are necessary WCS365 is a beneficial strain that is phylogenetically closely related to an opportunistic pathogen N2C3 and confers robust protection against N2C3 in the rhizosphere.
View Article and Find Full Text PDFArthritis Res Ther
December 2024
Department of Rheumatology, Hospital Universitario de Bellvitge. Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
Objective: To investigate differences in arterial involvement patterns on F-FDG PET-CT between predominant cranial and isolated extracranial phenotypes of giant cell arteritis (GCA).
Methods: A retrospective review of F-FDG PET-CT findings was conducted on 140 patients with confirmed GCA. The patients were divided into two groups: the cranial group, which presented craniofacial ischemic symptoms either at diagnosis or during follow-up, and the isolated extracranial group which never exhibited such manifestations.
Planta
December 2024
AgResearch, Christchurch, New Zealand.
Herbicide application to plants heterozygous for herbicide resistance results in distorted segregation favoring resistant allele transmission resulting in a conditional gene drive. Brassica napus plants heterozygous for an allele conferring sulfonylurea resistance at a single locus exhibit normal Mendelian inheritance. However, following application of the herbicide, highly distorted segregation of herbicide resistance occurs among progeny.
View Article and Find Full Text PDFReprod Biol Endocrinol
December 2024
IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Valencia, 46026, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!