Despite several works have described the usefulness of negative pressure therapy (NPT) in the treatment of diabetic foot ulcers (DFUs), no studies have reported its ability in the proteases modulation in DFUs. The aim of this work was to evaluate the role of NPT as a protease-modulating treatment in DFUs. We conducted a prospective study of a series of diabetic patients affected by chronic DFUs. Each ulcer was assessed for matrix metalloproteinases (MMPs) activity with a protease status diagnostic test at the baseline and after 2 weeks of NPT. Four patients were included. All patients had type 2 diabetes with a disease duration of ≈20 years. A1c was 79.5 ± 15.3 mmol/mol. Ulcer area was >5 cm in all cases. All wounds showed elevated protease activity (EPA) at the baseline. After 2 weeks, all patients showed a normalization of MMPs activity. NPT showed its effectiveness in the reduction of EPA in chronic DFUs. This study confirms the role of NPT in the positive modulation of protease activity also in chronic DFUs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5220563PMC
http://dx.doi.org/10.1089/wound.2016.0700DOI Listing

Publication Analysis

Top Keywords

protease activity
12
chronic dfus
12
negative pressure
8
pressure therapy
8
diabetic foot
8
foot ulcers
8
elevated protease
8
role npt
8
mmps activity
8
baseline weeks
8

Similar Publications

SARS-CoV-2 variant recurrence has emphasized the imperative prerequisite for effective antivirals. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication, making it one of the prime and promising antiviral targets. Mpro features several druggable sites, including active sites and allosteric sites near the dimerization interface, that regulate its catalytic activity.

View Article and Find Full Text PDF

Rationale: COVID-19-associated acute-respiratory distress syndrome (C-ARDS) results from a direct viral injury associated with host excessive innate immune response mainly affecting the lungs. However, cytokine profile in the lung compartment of C-ARDS patients has not been widely studied, nor compared to non-COVID related ARDS (NC-ARDS).

Objectives: To evaluate caspase-1 activation, IL-1 signature, and other inflammatory cytokine pathways associated with tissue damage using post-mortem lung tissues, bronchoalveolar lavage fluids (BALF), and serum across the spectrum of COVID-19 severity.

View Article and Find Full Text PDF

Prion disease is an uncommon entity characterized by exceptionally rapid neurodegenerative deterioration. There are three categories of prion disease: (1) sporadic: sporadic Creutzfeldt-Jakob disease (sCJD), sporadic fatal insomnia, and protease-sensitive prionopathy; (2) genetic: genetic Creutzfeldt-Jakob disease, familial fatal insomnia, and Gerstmann-Sträussler-Scheinker syndrome; and (3) acquired: Kuru, iatrogenic Creutzfeldt-Jakob disease, and variant Creutzfeldt-Jakob disease. Although it is an incurable disease, a specific pathophysiological mechanism exists involving neuronal loss, glial cell proliferation, absence of inflammatory response, development of vacuoles leading to a spongiform appearance, and the presence of prions.

View Article and Find Full Text PDF

NLRP3: a key regulator of skin wound healing and macrophage-fibroblast interactions in mice.

Cell Commun Signal

January 2025

Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.

Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are key regulators during gastric cancer (GC) development and may be viable treatment targets. In the present study, we showed that the expression of the long intergenic noncoding RNA 01016 (LINC01016) is significantly higher in GC tissues with lymph node metastasis (LNM) than those without LNM. LINC01016 overexpression predicts a poorer relapse-free survival (RFS) and overall survival (OS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!