Of the four syntaxins specialized for exocytosis, syntaxin (Syn)-2 is the least understood. In this study, we used Syn-2/epimorphin knockout mice to examine the role of Syn-2 in insulin secretory granule (SG) exocytosis. Unexpectedly, Syn-2 knockout mice exhibited paradoxical superior glucose homeostasis resulting from an enhanced insulin secretion. This was confirmed in vitro by pancreatic islet perifusion showing an amplified biphasic glucose-stimulated insulin secretion arising from an increase in size of the readily releasable pool of insulin SGs and enhanced SG pool refilling. The increase in insulin exocytosis was attributed mainly to an enhanced recruitment of the larger pool of newcomer SGs that undergoes no residence time on plasma membrane before fusion and, to a lesser extent, also the predocked SGs. Consistently, Syn-2 depletion resulted in a stimulation-induced increase in abundance of exocytotic complexes we previously demonstrated as mediating the fusion of newcomer SGs (Syn-3/VAMP8/SNAP25/Munc18b) and predocked SGs (Syn-1A/VAMP2/SNAP25/Muncn18a). This work is the first to show in mammals that Syn-2 could function as an inhibitory SNARE protein that, when relieved, could promote exocytosis in pancreatic islet β-cells. Thus, Syn-2 may serve as a potential target to treat diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860373 | PMC |
http://dx.doi.org/10.2337/db16-0636 | DOI Listing |
Methods Mol Biol
January 2025
Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding.
View Article and Find Full Text PDFRegulated secretion of insulin from β-cells, glucagon from α-cells, and somatostatin from δ-cells is necessary for the maintenance of glucose homeostasis. The release of these hormones from pancreatic islet cells requires the assembly and disassembly of the SNARE protein complex to control vesicle fusion and exocytosis. Complexin 2 (Cplx 2) is a small soluble synaptic protein that participates in the priming and release steps of vesicle fusion.
View Article and Find Full Text PDFFASEB J
November 2024
Section for Medical Protein Chemistry, Department of Translational Medicine, Lund university, Malmö, Sweden.
CD59 is a cell-surface inhibitor of the terminal step in the complement cascade. However, in addition to its complement inhibitory function, a non-canonical role of CD59 in pancreatic beta cells has been identified. Two recently discovered intracellular alternative splice forms of CD59, IRIS-1 and IRIS-2, are involved in insulin exocytosis through interactions with SNARE-complex components.
View Article and Find Full Text PDFiScience
November 2024
Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
Inhibitory synaptic neurotransmission mediated by GABA requires a low concentration of chloride ions (Cl) in neurons, which is established and maintained by the potassium-chloride co-transporter 2 (KCC2). While KCC2-interacting proteins are known to regulate KCC2 protein level and function, specific KCC2-interacting partners are still being identified and characterized. We asked whether SNAP25, an integral component of the SNARE-complex and a novel KCC2 interactor, regulates KCC2 protein and function in mice.
View Article and Find Full Text PDFAntioxidants (Basel)
October 2024
Laboratory of Biopharmaceuticals and Molecular Pharmacology, Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!