Of the four syntaxins specialized for exocytosis, syntaxin (Syn)-2 is the least understood. In this study, we used Syn-2/epimorphin knockout mice to examine the role of Syn-2 in insulin secretory granule (SG) exocytosis. Unexpectedly, Syn-2 knockout mice exhibited paradoxical superior glucose homeostasis resulting from an enhanced insulin secretion. This was confirmed in vitro by pancreatic islet perifusion showing an amplified biphasic glucose-stimulated insulin secretion arising from an increase in size of the readily releasable pool of insulin SGs and enhanced SG pool refilling. The increase in insulin exocytosis was attributed mainly to an enhanced recruitment of the larger pool of newcomer SGs that undergoes no residence time on plasma membrane before fusion and, to a lesser extent, also the predocked SGs. Consistently, Syn-2 depletion resulted in a stimulation-induced increase in abundance of exocytotic complexes we previously demonstrated as mediating the fusion of newcomer SGs (Syn-3/VAMP8/SNAP25/Munc18b) and predocked SGs (Syn-1A/VAMP2/SNAP25/Muncn18a). This work is the first to show in mammals that Syn-2 could function as an inhibitory SNARE protein that, when relieved, could promote exocytosis in pancreatic islet β-cells. Thus, Syn-2 may serve as a potential target to treat diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860373PMC
http://dx.doi.org/10.2337/db16-0636DOI Listing

Publication Analysis

Top Keywords

inhibitory snare
8
granule exocytosis
8
knockout mice
8
insulin secretion
8
pancreatic islet
8
newcomer sgs
8
predocked sgs
8
insulin
6
syn-2
6
exocytosis
5

Similar Publications

Investigating Complexin-Membrane Interactions Using NMR and Optical Methods.

Methods Mol Biol

January 2025

Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.

Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding.

View Article and Find Full Text PDF

Regulated secretion of insulin from β-cells, glucagon from α-cells, and somatostatin from δ-cells is necessary for the maintenance of glucose homeostasis. The release of these hormones from pancreatic islet cells requires the assembly and disassembly of the SNARE protein complex to control vesicle fusion and exocytosis. Complexin 2 (Cplx 2) is a small soluble synaptic protein that participates in the priming and release steps of vesicle fusion.

View Article and Find Full Text PDF

CD59 double knockout mice express a CD59ba hybrid fusion protein that mediates insulin secretion.

FASEB J

November 2024

Section for Medical Protein Chemistry, Department of Translational Medicine, Lund university, Malmö, Sweden.

CD59 is a cell-surface inhibitor of the terminal step in the complement cascade. However, in addition to its complement inhibitory function, a non-canonical role of CD59 in pancreatic beta cells has been identified. Two recently discovered intracellular alternative splice forms of CD59, IRIS-1 and IRIS-2, are involved in insulin exocytosis through interactions with SNARE-complex components.

View Article and Find Full Text PDF

Inhibitory synaptic neurotransmission mediated by GABA requires a low concentration of chloride ions (Cl) in neurons, which is established and maintained by the potassium-chloride co-transporter 2 (KCC2). While KCC2-interacting proteins are known to regulate KCC2 protein level and function, specific KCC2-interacting partners are still being identified and characterized. We asked whether SNAP25, an integral component of the SNARE-complex and a novel KCC2 interactor, regulates KCC2 protein and function in mice.

View Article and Find Full Text PDF

Integrative Human Genetic and Cellular Analysis of the Pathophysiological Roles of AnxA2 in Alzheimer's Disease.

Antioxidants (Basel)

October 2024

Laboratory of Biopharmaceuticals and Molecular Pharmacology, Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.

Article Synopsis
  • Alzheimer's disease (AD) is characterized by the aggregation of amyloid beta (Aβ), leading to neurotoxicity and various pathological changes that ultimately result in neuronal death.
  • This study examined gene expression in AD patients vs. healthy individuals, identifying annexin A2 (AnxA2) as a key gene influenced by Aβ, linked to processes like neuroinflammation and apoptosis.
  • Experiments showed that knocking down AnxA2 worsened cytotoxic effects from Aβ42, impacting mitochondrial function, cell cycle, and inflammatory responses, highlighting AnxA2's critical role in AD pathology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!