Recently, oxidative stress is involved in hepatofibrogenesis. Matrix metalloproteinase-2 (MMP-2) is required for activation of hepatic stellate cells (HSCs) in response to reactive oxygen species (ROS). This study was designed to explore the hypothesis that the inhibitory effect of rosmarinic acid (RA) on HSCs activation might mainly result from its antioxidant capability by increasing the synthesis of glutathione (GSH) involved in nuclear factor kappa B (NF-κB)-dependent inhibition of MMP-2 activity. Here, we demonstrate that RA reverses activated HSCs to quiescent cells. Concomitantly, RA inhibits MMP-2 activity. RNA interference-imposed knockdown of NF-κB abolished down-regulation of MMP-2 by RA. RA-mediated inactivation of NF-κB could be blocked by the diphenyleneiodonium chloride (DPI; a ROS inhibitor). Conversely, transfection of dominant-negative (DN) mutant of extracellular signal-regulated kinases 2 (ERK2), c-Jun N-terminal kinase 1 (JNK1), or p38α kinase had no such effect. Simultaneously, RA suppresses ROS generation and lipid peroxidation (LPO) whereas increases cellular GSH in HSC-T6 cells. Furthermore, RA significantly increased antioxidant response element (ARE)-mediated luciferase activity, nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and catalytic subunits from glutamate cysteine ligase (GCLc) expression, but not modulatory subunits from GCL (GCLm). RA-mediated up-regulation of GClc is inhibited by the shRNA-induced Nrf2 knockdown. The knocking down of Nrf2 or buthionine sulfoximine (a GCL inhibitor) abolished RA-mediated inhibition of ROS. Collectively, these results provide novel insights into the mechanisms of RA as an antifibrogenic candidate in the prevention and treatment of liver fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2017.01.008DOI Listing

Publication Analysis

Top Keywords

mmp-2 activity
12
rosmarinic acid
8
activation hepatic
8
hepatic stellate
8
stellate cells
8
nuclear factor
8
mmp-2
5
acid counteracts
4
counteracts activation
4
cells
4

Similar Publications

Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge.

View Article and Find Full Text PDF

Metastasis is the trigger of death in anaplastic thyroid cancer (ATC) patients, yet the specific mechanisms at play are still largely enigmatic. While the involvement of LARP1 in the metastatic process of various cancers has been documented, there is a noticeable gap in the literature regarding its potential influence on ATC metastasis. Molecular studies probed LARP1 expression within ATC cells, with subsequent in vitro experiments examining the effects of LARP1 on ATC cell metastasis and the mTOR signaling cascade.

View Article and Find Full Text PDF

Longikaurin A (LK-A), a naturally occurring ent-kaurane diterpenoid, has been identified as a promising anti-cancer agent. This study aims to elucidate the anti-tumorigenic effects of LK-A on oral squamous cell carcinoma (OSCC) cells and to unravel its underlying mechanisms. assays, including CCK-8 and EdU, were performed to assess cell viability and proliferation.

View Article and Find Full Text PDF

Background: Cardiovascular diseases constitute one of the leading causes of morbidity and mortality worldwide. Herbal medicines represent viable alternatives to the synthetic drugs currently employed in the control of hypertension. This study aimed to isolate and identify the chemical markers of and to investigate the antihypertensive and anti-matrix metalloproteinase (MMP2) activities of an aqueous extract of the leaves.

View Article and Find Full Text PDF

The Complex Role of Matrix Metalloproteinase-2 (MMP-2) in Health and Disease.

Int J Mol Sci

December 2024

Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.

Matrix metalloproteinase-2 (MMP-2), a zinc-dependent enzyme, plays a critical role in the degradation and remodeling of the extracellular matrix (ECM). As a member of the gelatinase subgroup of matrix metalloproteinases, MMP-2 is involved in a variety of physiological processes, including tissue repair, wound healing, angiogenesis, and embryogenesis. It is primarily responsible for the degradation of type IV and V collagen, fibronectin, laminin, and elastin, which are essential components of the ECM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!