Background: To identify molecular alterations in skeletal muscle in rheumatoid arthritis (RA) that may contribute to ongoing disability in RA.

Methods: Persons with seropositive or erosive RA (n = 51) and control subjects matched for age, gender, race, body mass index (BMI), and physical activity (n = 51) underwent assessment of disease activity, disability, pain, physical activity and thigh muscle biopsies. Muscle tissue was used for measurement of pro-inflammatory markers, transcriptomics, and comprehensive profiling of metabolic intermediates. Groups were compared using mixed models. Bivariate associations were assessed with Spearman correlation.

Results: Compared to controls, patients with RA had 75% greater muscle concentrations of IL-6 protein (p = 0.006). In patients with RA, muscle concentrations of inflammatory markers were positively associated (p < 0.05 for all) with disease activity (IL-1β, IL-8), disability (IL-1β, IL-6), pain (IL-1β, TNF-α, toll-like receptor (TLR)-4), and physical inactivity (IL-1β, IL-6). Muscle cytokines were not related to corresponding systemic cytokines. Prominent among the gene sets differentially expressed in muscles in RA versus controls were those involved in skeletal muscle repair processes and glycolytic metabolism. Metabolic profiling revealed 46% higher concentrations of pyruvate in muscle in RA (p < 0.05), and strong positive correlation between levels of amino acids involved in fibrosis (arginine, ornithine, proline, and glycine) and disability (p < 0.05).

Conclusion: RA is accompanied by broad-ranging molecular alterations in skeletal muscle. Analysis of inflammatory markers, gene expression, and metabolic intermediates linked disease-related disruptions in muscle inflammatory signaling, remodeling, and metabolic programming to physical inactivity and disability. Thus, skeletal muscle dysfunction might contribute to a viscous cycle of RA disease activity, physical inactivity, and disability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5260091PMC
http://dx.doi.org/10.1186/s13075-016-1215-7DOI Listing

Publication Analysis

Top Keywords

molecular alterations
8
alterations skeletal
8
skeletal muscle
8
muscle rheumatoid
8
rheumatoid arthritis
8
disease activity
8
physical activity
8
muscle concentrations
8
muscle
6
arthritis disease
4

Similar Publications

Significant Impact of a Daytime Halogen Oxidant on Coastal Air Quality.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China.

Chlorine radicals (Cl) are highly reactive and affect the fate of air pollutants. Several field studies in China have revealed elevated levels of daytime molecular chlorine (Cl), which, upon photolysis, release substantial amounts of Cl but are poorly represented in current chemical transport models. Here, we implemented a parametrization for the formation of daytime Cl through the photodissociation of particulate nitrate in acidic environments into a regional model and assessed its impact on coastal air quality during autumn in South China.

View Article and Find Full Text PDF

The cytotoxic T-lymphocyte antigen-4 (CTLA4) is essential in controlling T cell activity within the immune system. Thus, uncovering the molecular dynamics of single nucleotide polymorphisms (SNPs) within the CTLA4 gene is critical. We identified the non-synonymous SNPs (nsSNPs), examined their impact on protein stability, and identified the protein sequences associated with them in the human CTLA4 gene.

View Article and Find Full Text PDF

Altered neural signaling in fibromyalgia syndrome (FM) was investigated with functional magnetic resonance imaging (fMRI). We employed a novel fMRI network analysis method, Structural and Physiological Modeling (SAPM), which provides more detailed information than previous methods. The study involved brain fMRI data from participants with FM (N = 22) and a control group (HC, N = 18), acquired during a noxious stimulation paradigm.

View Article and Find Full Text PDF

Autoimmune gastritis (AIG) is a chronic inflammatory condition characterized by immune-mediated destruction of gastric parietal cells, leading to oxyntic atrophy, achlorhydria, and hypergastrinemia. While AIG was historically linked to gastric adenocarcinoma and type I neuroendocrine tumors (NETs), recent evidence suggests the risk of adenocarcinoma in AIG is lower than previously believed, particularly in Helicobacter pylori (H. pylori)-negative patients.

View Article and Find Full Text PDF

Background: The mycobiome in the tumor microenvironment of non-smokers with early-stage lung adenocarcinoma (ES-LUAD) has been minimally investigated.

Methods: In this study, we conducted ultra-deep metagenomic and transcriptomic sequencing on 128 samples collected from 46 nonsmoking ES-LUAD patients and 41 healthy controls (HC), aiming to characterize the tumor-resident mycobiome and its interactions with the host.

Results: The results revealed that ES-LUAD patients exhibited fungal dysbiosis characterized by reduced species diversity and significant imbalances in specific fungal abundances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!