Understanding Resonant Light-Triggered DNA Release from Plasmonic Nanoparticles.

ACS Nano

Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States.

Published: January 2017

Nanoparticle-based platforms for gene therapy and drug delivery are gaining popularity for cancer treatment. To improve therapeutic selectivity, one important strategy is to remotely trigger the release of a therapeutic cargo from a specially designed gene- or drug-laden near-infrared (NIR) absorbing gold nanoparticle complex with NIR light. While there have been multiple demonstrations of NIR nanoparticle-based release platforms, our understanding of how light-triggered release works in such complexes is still limited. Here, we investigate the specific mechanisms of DNA release from plasmonic nanoparticle complexes using continuous wave (CW) and femtosecond pulsed lasers. We find that the characteristics of nanoparticle-based DNA release vary profoundly from the same nanoparticle complex, depending on the type of laser excitation. CW laser illumination drives the photothermal release of dehybridized single-stranded DNA, while pulsed-laser excitation results in double-stranded DNA release by cleavage of the Au-S bond, with negligible local heating. This dramatic difference in DNA release from the same DNA-nanoparticle complex has very important implications in the development of NIR-triggered gene or drug delivery nanocomplexes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.6b06510DOI Listing

Publication Analysis

Top Keywords

dna release
20
release
9
release plasmonic
8
drug delivery
8
nanoparticle complex
8
dna
6
understanding resonant
4
resonant light-triggered
4
light-triggered dna
4
plasmonic nanoparticles
4

Similar Publications

Aptazyme-directed A-to-I RNA editing.

Methods Enzymol

January 2025

Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, P.R. China. Electronic address:

As a promising therapeutic approach, the RNA editing process can correct pathogenic mutations and is reversible and tunable, without permanently altering the genome. RNA editing mediated by human ADAR proteins offers unique advantages, including high specificity and low immunogenicity. Compared to CRISPR-based gene editing techniques, RNA editing events are temporary, which can reduce the risk of long-term unintended side effects, making off-target edits less concerning than DNA-targeting methods.

View Article and Find Full Text PDF

Correlation among blastocoel fluid DNA level, apoptotic genes expression and preimplantation aneuploidy.

Reprod Fertil

January 2025

M Bazrgar, Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran., Tehran, Iran (the Islamic Republic of).

It is believed that aneuploid embryos release cell-free DNA (cfDNA) into the blastocyst cavity during the self-correction process through the apoptotic mechanism. This study aimed to develop less invasive methods for predicting ploidy status by investigating how ploidy status affects blastocoel fluid DNA (BF-DNA) levels and apoptotic gene expression as indicators of embryo viability. Human blastocysts were classified into three groups; Survivable Embryo (SE), Fatal Single and double Aneuploidy (FSDA), and Multiple Aneuploidy (MA) using array comparative genomic hybridization (array-CGH) by trophectoderm (TE) biopsy.

View Article and Find Full Text PDF

Has AlphaFold3 achieved success for RNA?

Acta Crystallogr D Struct Biol

February 2025

Université Paris-Saclay, Université Evry, IBISC, 91020 Evry-Courcouronnes, France.

Predicting the 3D structure of RNA is a significant challenge despite ongoing advancements in the field. Although AlphaFold has successfully addressed this problem for proteins, RNA structure prediction raises difficulties due to the fundamental differences between proteins and RNA, which hinder its direct adaptation. The latest release of AlphaFold, AlphaFold3, has broadened its scope to include multiple different molecules such as DNA, ligands and RNA.

View Article and Find Full Text PDF

methylGrapher: genome-graph-based processing of DNA methylation data from whole genome bisulfite sequencing.

Nucleic Acids Res

January 2025

Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.

Genome graphs, including the recently released draft human pangenome graph, can represent the breadth of genetic diversity and thus transcend the limits of traditional linear reference genomes. However, there are no genome-graph-compatible tools for analyzing whole genome bisulfite sequencing (WGBS) data. To close this gap, we introduce methylGrapher, a tool tailored for accurate DNA methylation analysis by mapping WGBS data to a genome graph.

View Article and Find Full Text PDF

Timely and accurate detection of trace mycotoxins in agricultural products and food is significant for ensuring food safety and public health. Herein, a deep learning-assisted and entropy-driven catalysis (EDC)-Argonaute powered fluorescence single-particle aptasensing platform was developed for ultrasensitive detection of fumonisin B (FB) using single-stranded DNA modified with biotin and red fluorescence-encoded microspheres as a signal probe and streptavidin-conjugated magnetic beads as separation carriers. The binding of aptamer with FB releases the trigger sequence to mediate EDC cycle to produce numerous 5'-phosphorylated output sequences, which can be used as the guide DNA to activate downstream Argonaute (Ago) for cleaving the signal probe, resulting in increased number of fluorescence microspheres remaining in the final reaction supernatant after magnetic separation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!