The net primary productivity (NPP) of tropical forests is a key process of the carbon cycle and therefore for the mitigation of global climate change. It has been proposed that NPP is limited by the availability of soil nutrients in lowland tropical forests and that belowground NPP decreases as edaphic fertility increases. This hypothesis was evaluated in two localities (Opogodó and Pacurita) of the Chocó Biogeographical region, one of the rainiest of the world, where the aboveground (litter and wood) and belowground (fine and coarse roots) components of NPP were measured. Fertility parameters (pH, nutrients, and texture) were also determined and related to NPP. Total NPP was similar between locations (23.7 vs. 24.2 t ha-1 year-1 for Opogodó and Pacurita, respectively). However, components of NPP showed differences: in Pacurita, with steeper topography, NPP of wood and coarse roots were higher; therefore, differences of topography and drainage between localities probably affected the NPP of wood. On the other hand, soils of Opogodó, where NPP of fine roots was higher, showed higher contents of sand, N+, and organic matter (OM). With the increase of pH, OM, N+, K, Mg, and sand, the NPP of leaves and fine roots as well as the percentage of NPP belowground also increased, which suggests NPP limitation by multiple nutrients. The increase of NPP belowground with the availability of edaphic nutrients evidenced a redistribution of the aboveground and belowground components of NPP with the increase of soil fertility in oligotrophic systems, probably as a mechanism to improve the capture of resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5256865 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168211 | PLOS |
Front Plant Sci
January 2025
Yellow River Institute of Hydraulic Research, Henan Key Laboratory of Yellow Basin Ecological Protection and Restoration, Zhengzhou, China.
Vegetation productivity and ecosystem carbon sink capacity are significantly influenced by seasonal weather patterns. The time lags between changes in these patterns and ecosystem (including vegetation) responses is a critical aspect in vegetation-climate and ecosystem-climate interactions. These lags can vary considerably due to the spatial heterogeneity of vegetation and ecosystems.
View Article and Find Full Text PDFStat Med
February 2025
U.S. Food and Drug Administration, Silver Spring, Maryland.
The recent U.S. Food and Drug Administration guidance on complex innovative trial designs acknowledges the use of Bayesian strategies to incorporate historical information based on clinical expertise and data similarity.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Bioprocess Research and Development (BRD), WuXi Biologics, Shanghai, China.
Serving as a dedicated process analytical technology (PAT) tool for biomass monitoring and control, the capacitance probe, or dielectric spectroscopy, is showing great potential in robust pharmaceutical manufacturing, especially with the growing interest in integrated continuous bioprocessing. Despite its potential, challenges still exist in terms of its accuracy and applicability, particularly when it is used to monitor cells during stationary and decline phases. In this study, data pre-processing methods were first evaluated through cross-validation, where the first-order derivative emerged as the most effective method to diminish variability in prediction accuracy across different training datasets.
View Article and Find Full Text PDFACS ES T Water
January 2025
Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
Russia's invasion of Ukraine continues to have a devastating effect on the well-being of Ukrainians and their environment. We evaluated a major environmental hazard caused by the war: the potential for groundwater contamination in proximity to the Zaporizhzhia Nuclear Power Plant (NPP). We quantified groundwater vulnerability with the DRASTIC index, which was originally developed by the United States Environmental Protection Agency and has been used at various locations worldwide to assess relative pollution potential.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Department of Production Engineering and Mechanical Design, Faculty of Engineering, Tanta University 31527, Egypt; Faculty of Engineering, Pharos University in Alexandria 21648, Alexandria, Egypt.
This review examines the potential for utilizing nuclear power plant (NPP) waste heat in hybrid desalination systems, focusing on Reverse Osmosis-Low-Temperature Evaporation (RO-LTE) driven by renewable energy sources and atomic waste heat. By employing a SOAR (Strengths, Opportunities, Aspirations, Results) analysis, the study evaluates the integration of NPP waste heat into various desalination technologies, emphasizing the environmental benefits and energy efficiency improvements. Fundamental aspirations include advancements in material science and heat exchanger designs, which enhance heat transfer and evaporation processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!