Ecological theory has uncovered dynamical differences between food web modules (i.e. low species food web configurations) with only species-level links and food web modules that include within-species links (e.g. non-feeding links between mature and immature individuals) and has argued that these differences ought to cause food web theory that includes within-species links to contrast with classical food web theory. It is unclear, however, if life-history will affect the observed connection between interaction strength and stability in species-level theory. We show that when the predator in a species-level food chain is split into juvenile and adult stages using a simple nested approach, stage-structure can mute potentially strong interactions through the transfer of biomass within a species. Within-species biomass transfer distributes energy away from strong interactions promoting increased system stability consistent with classical food web theory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5256945 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170725 | PLOS |
Pharmacol Rep
January 2025
Research Laboratory CoreLab of the Medical University of Lodz, Łódź, Poland.
Background: The current study investigated the effects of high-fat diet on acute response to 3,4-methylenedioxypyrovalerone (MDPV) in mice. MDPV is a beta-cathinone derivative endowed with psychostimulant activity. Similarly to recreational substances, consumption of palatable food stimulates the mesolimbic dopaminergic system, resulting in neuroadaptive changes.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India.
Phytoplankton are diverse photosynthetic organisms in estuarine ecosystems and sensitive indicators of environmental changes. This study employed Generalized Additive Model (GAM) to explore the impact of environmental variables on the abundance of six dominant phytoplankton species in the tropical Karanja estuary, India. Data were collected from five sampling stations between January 2022 and March 2023.
View Article and Find Full Text PDFPhysiol Rep
February 2025
Quebec Heart and Lung Institute - Laval University, Quebec, Quebec, Canada.
Metabolic dysfunction-associated steatotic liver disease (MASLD) describes liver diseases caused by the accumulation of triglycerides in hepatocytes (steatosis) as well as the resulting inflammation and fibrosis. Previous studies have demonstrated that accumulation of fat in visceral adipose tissue compartments and the liver is associated with alterations in the circulating levels of some amino acids, notably glutamate. This study aimed to investigate the associations between circulating amino acids, particularly glutamate, and MASLD.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
UMR CNRS-UniCaen-MNHN-SU-UA-IRD BOREA, Biologie des Organismes et des Écosystèmes Aquatiques, Université de Caen-Normandie, CS 14032, 14000 Caen, France - France Énergies Marines, 53 rue de Prony, 76600 Le Havre, France.
In the anthropocene era, one of the greatest challenges facing trophic modeling applied to the marine environment is its ability to couple the multiple effects of both climate change and local anthropogenic activities, notably the development of offshore wind farms. The major challenge is to create scenarios to characterize their cumulative effects on the functioning of the entire socio-ecological system, in order to propose appropriate management plans. Although modeling cumulative impact on socio-ecological networks is not yet widely used, data reported in the present review article show that the relevance of this approach could be established in the context of offshore wind power.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Surface Waters-Research and Management, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.
The primary production of fjords across the Arctic and Subarctic is undergoing significant transformations due to the climatically driven retreat of glaciers and ice sheets. However, the implications of these changes for upper trophic levels remain largely unknown. In this study, we employ both bulk and compound-specific stable isotope analyses to investigate how shifts at the base of fjord food webs impact the carbon and energy sources of consumers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!