Combination of principal component analysis and optical-flow motion compensation for improved cardiac MR thermometry.

Phys Med Biol

IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux University, F-33600 Pessac-Bordeaux, France. INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France. Siemens Healthineers France, F-93210 Saint-Denis, France.

Published: February 2017

The use of magnetic resonance (MR) thermometry for the monitoring of thermal ablation is rapidly expanding. However, this technique remains challenging for the monitoring of the treatment of cardiac arrhythmia by radiofrequency ablation due to the heart displacement with respiration and contraction. Recent studies have addressed this problem by compensating in-plane motion in real-time with optical-flow based tracking technique. However, these algorithms are sensitive to local variation of signal intensity on magnitude images associated with tissue heating. In this study, an optical-flow algorithm was combined with a principal component analysis method to reduce the impact of such effects. The proposed method was integrated to a fully automatic cardiac MR thermometry pipeline, compatible with a future clinical workflow. It was evaluated on nine healthy volunteers under free breathing conditions, on a phantom and in vivo on the left ventricle of a sheep. The results showed that local intensity changes in magnitude images had lower impact on motion estimation with the proposed method. Using this strategy, the temperature mapping accuracy was significantly improved.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/aa51f9DOI Listing

Publication Analysis

Top Keywords

principal component
8
component analysis
8
cardiac thermometry
8
magnitude images
8
proposed method
8
combination principal
4
analysis optical-flow
4
optical-flow motion
4
motion compensation
4
compensation improved
4

Similar Publications

Identifying and quantifying the dominant factors influencing heavy metal (HM) pollution sources are essential for maintaining soil ecological health and implementing effective pollution control measures. This study analyzed soil HM samples from 53 different land use types in Jiaozuo City, Henan Province, China. Pollution sources were identified using Absolute Principal Component Score (APCS), with 8 anthropogenic factors, 9 natural factors, and 4 soil physicochemical properties mapped using Geographic Information System (GIS) kernel density estimation.

View Article and Find Full Text PDF

This study provides a detailed approach to evaluating water quality in the Haridwar district, Uttarakhand, India, by integrating physicochemical and microbiological investigations. It employs multivariate analysis and applies water quality and trophic state indices to evaluate the current state of the water and identify potential sources of contamination. The results from the correlation matrix highlight the dynamic interactions between different water quality parameters.

View Article and Find Full Text PDF

Background: The risk of perinatal death and severe neonatal morbidity increases gradually after 41 weeks of pregnancy. We evaluated maternal and perinatal outcomes after a national shift from expectancy and induction at 42+0 weeks to a more active management of late-term pregnancies in Sweden offering induction from 41+0 weeks or an individual plan aiming at birth or active labour no later than 42+0 weeks.

Methods And Findings: Women with a singleton pregnancy lasting 41+0 weeks or more with a fetus in cephalic presentation (N = 150,370) were included in a nationwide, register-based cohort study.

View Article and Find Full Text PDF

Centrifugal compressors are widely used in the oil and natural gas industry for gas compression, reinjection, and transportation. Fault diagnosis and identification of centrifugal compressors are crucial. To promptly monitor abnormal changes in compressor data and trace the causes leading to these data anomalies, this paper proposes a security monitoring and root cause tracing method for compressor data anomalies.

View Article and Find Full Text PDF

Background: Cancer immune responses are generated in secondary lymphoid organs, such as the lymph nodes and tonsils. In the current study, transcriptional profiles of peritumoral tonsillar tissues (PTTs) from oropharyngeal cancers (OPCs) were assessed and compared with those of inflammatory tonsils and regional lymph nodes (rLNs).

Methods: RNA samples of PTTs and rLNs from 13 OPCs, and 4 inflammatory tonsils were subjected to microarray analysis, and differentially expressed genes (DEGs) identified from 730 nCounter Panel immune-related genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!