A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Robust Nanoparticles Detection From Noisy Background by Fusing Complementary Image Information. | LitMetric

This paper studies the problem of detecting the presence of nanoparticles in noisy transmission electron microscopic (TEM) images and then fitting each nanoparticle with an elliptic shape model. In order to achieve robustness while handling low contrast and high noise in the TEM images, we propose an approach to fuse two kinds of complementary image information, namely, the pixel intensity and the gradient (the first derivative in intensity). Our approach entails two main steps: 1) the first step is to, after necessary pre-processing, employ both intensity-based information and gradient-based information to process the same TEM image and produce two independent sets of results and 2) the subsequent step is to formulate a binary integer programming (BIP) problem for conflict resolution among the two sets of results. Solving the BIP problem determines the final nanoparticle identification. We apply our method to a set of TEM images taken under different microscopic resolutions and noise levels. The empirical results show the merit of the proposed method. It can process a TEM image of 1024×1024 pixels in a few minutes, and the processed outcomes appear rather robust.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2016.2614127DOI Listing

Publication Analysis

Top Keywords

tem images
12
complementary image
8
process tem
8
tem image
8
bip problem
8
tem
5
robust nanoparticles
4
nanoparticles detection
4
detection noisy
4
noisy background
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!