In this paper, we present a large-scale sparse learning (LSSL) approach to solve the challenging task of semantic segmentation of images with noisy tags. Different from the traditional strongly supervised methods that exploit pixel-level labels for semantic segmentation, we make use of much weaker supervision (i.e., noisy tags of images) and then formulate the task of semantic segmentation as a weakly supervised learning (WSL) problem from the view point of noise reduction of superpixel labels. By learning the data manifolds, we transform the WSL problem into an LSSL problem. Based on nonlinear approximation and dimension reduction techniques, a linear-time-complexity algorithm is developed to solve the LSSL problem efficiently. We further extend the LSSL approach to visual feature refinement for semantic segmentation. The experiments demonstrate that the proposed LSSL approach can achieve promising results in semantic segmentation of images with noisy tags.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2016.2631528 | DOI Listing |
Sci Rep
January 2025
Computer Vision Center, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain.
In this study, we explore an enhancement to the U-Net architecture by integrating SK-ResNeXt as the encoder for Land Cover Classification (LCC) tasks using Multispectral Imaging (MSI). SK-ResNeXt introduces cardinality and adaptive kernel sizes, allowing U-Net to better capture multi-scale features and adjust more effectively to variations in spatial resolution, thereby enhancing the model's ability to segment complex land cover types. We evaluate this approach using the Five-Billion-Pixels dataset, composed of 150 large-scale RGB-NIR images and over 5 billion labeled pixels across 24 categories.
View Article and Find Full Text PDFNeural Netw
December 2024
Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore. Electronic address:
Manual annotation of ultrasound images relies on expert knowledge and requires significant time and financial resources. Semi-supervised learning (SSL) exploits large amounts of unlabeled data to improve model performance under limited labeled data. However, it faces two challenges: fusion of contextual information at multiple scales and bias of spatial information between multiple objects.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronics, Information and Communication Engineering, Kangwon National University, Samcheok, Republic of Korea.
Detecting brain tumours (BT) early improves treatment possibilities and increases patient survival rates. Magnetic resonance imaging (MRI) scanning offers more comprehensive information, such as better contrast and clarity, than any alternative scanning process. Manually separating BTs from several MRI images gathered in medical practice for cancer analysis is challenging and time-consuming.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Robotics & Mechatronics Engineering, DGIST, Daegu, 42988, South Korea.
Motivation: Skeletal muscle cells (skMCs) combine together to create long, multi-nucleated structures called myotubes. By studying the size, length, and number of nuclei in these myotubes, we can gain a deeper understanding of skeletal muscle development. However, human experimenters may often derive unreliable results owing to the unusual shape of the myotube, which causes significant measurement variability.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
IPSIBAT (CONICET/National University of Mar del Plata), Mar del Plata, Buenos Aires, Argentina.
Background: Neuropsychological language assessment batteries usually include connected speech tasks (e.g. the description of a picture).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!