Complex-valued (CV) B-spline neural network approach offers a highly effective means for identifying and inverting practical Hammerstein systems. Compared with its conventional CV polynomial-based counterpart, a CV B-spline neural network has superior performance in identifying and inverting CV Hammerstein systems, while imposing a similar complexity. This paper reviews the optimality of the CV B-spline neural network approach. Advantages of B-spline neural network approach as compared with the polynomial based modeling approach are extensively discussed, and the effectiveness of the CV neural network-based approach is demonstrated in a real-world application. More specifically, we evaluate the comparative performance of the CV B-spline and polynomial-based approaches for the nonlinear iterative frequency-domain decision feedback equalization (NIFDDFE) of single-carrier Hammerstein channels. Our results confirm the superior performance of the CV B-spline-based NIFDDFE over its CV polynomial-based counterpart.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2016.2609001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!